US11737263B2

In a three-dimensional memory device, an interconnect structure is formed over a substrate and a first deck is formed over the interconnect structure. The first deck includes alternating first insulating layers and first word line layers, and a first channel structure extending through the first stack. The first channel structure has a first channel dielectric region and a first channel layer. The first channel dielectric region is formed along sidewalls of the first channel structure, positioned over a top surface of the interconnect structure, and in contact with the first insulating layers and the first word line layers. The first channel layer is formed along the first channel dielectric region, and includes a rounded projection that extends away from the top surface of the interconnect structure, extends outwards into the first stack at an interface of the interconnect structure, the first channel structure and the first stack.
US11737258B2

An IC may include an array of memory cells formed in a semiconductor, including memory cells arranged in rows and columns, each memory cell may include a floating body region defining at least a portion of a surface of the memory cell, the floating body region having a first conductivity type; a buried region located within the memory cell and located adjacent to the floating body region, wherein the buried region has a second conductivity type, wherein the floating body region is bounded on a first side by a first insulating region having a first thickness and on a second side by a second insulating region having a second thickness, and a gate region above the floating body region and the second insulating region and is insulated from the floating body region by an insulating layer; and control circuitry configured to provide electrical signals to said buried region.
US11737252B2

Tape-feeder setting work apparatus (40), which is used when an operator performs a work of setting a component supply tape wound on tape reel (12), in tape feeder (10), includes feeder set base (41) configured to hold the tape feeder in the setting work of the component supply tape, power supply section (47) configured to supply a power to tape feeding device (29) inside the tape feeder, and operation section (51) configured to allow the operator to operate the tape feeding device inside the tape feeder. When a work of setting a tip portion of the component supply tape by pulling out the tip portion from the tape reel set in the tape feeder held by the feeder set base is performed, the operator operates the operation section of the tape-feeder setting work apparatus to operate a tape feeding operation of the tape feeding device inside the tape feeder, and feeds the tip portion of the component supply tape pulled out from the tape reel to a component pickup position of the tape feeder.
US11737243B2

Disclosed is a method for producing a thermally conductive thin film for protecting elements and the like integrated inside an electronic device such as a smartphone from heat. A method for using synthetic graphite powder to produce a thin film that has excellent thermal conductivity compared to existing natural graphite thin films or metal thin films and can be produced at lower cost than existing synthetic graphite thin films obtained from polyimide or the like may be provided.
US11737239B2

Conditioning systems and methods for providing cooling to a heat load can include an evaporative cooler arranged in a scavenger plenum with a recovery coil downstream of the evaporative cooler. The conditioning systems can operate in various modes, including an adiabatic mode and an evaporative mode, depending on outdoor air conditions. The systems can operate in a blended mode between the adiabatic mode and the evaporative mode by varying the distribution of return water from the recovery coil into at least partially isolated sections of a storage tank, and selectively directing cold water from the evaporative cooler into the tank. The mix of warm and cold water exiting the tank can be varied to maintain the cold-water supply at or near a set point temperature for the heat load. In an example, the systems can include a pre-cooler in the plenum upstream of the evaporative cooler for pre-conditioning the scavenger air.
US11737238B1

A cooling system configured to remove heat from a chimney of a server cabinet. The chimney has an extending portion extending above the server rack including a chimney heat exchanger in the extending portion above the server rack. The chimney heat exchanger has a fluid inlet for receiving a working fluid and a fluid outlet for discharging the working fluid. The chimney heat exchanger also has an upstream surface receiving warm waste heat generated by one or more servers and a downstream surface that discharges cooled air cooled by the chimney heat exchanger. The server rack may be accessed through the chimney without requiring movement of the chimney heat exchanger.
US11737234B2

A mounting kit adapted for a rail component is provided and includes a mounting base, a resilient component and an engaging structure. An accommodating slot is formed on a first end portion of the mounting base. The resilient component is a one-piece structure and detachably and partially accommodated in the accommodating slot. The engaging structure is formed on a second end portion of the mounting base. When the mounting kit is mounted on the rail component, the resilient component is resiliently deformed by the rail component and a wall of the accommodating slot, so as to drive the rail component to engage with the engaging structure along a vertical direction and to abut against a connecting portion of the mounting base for preventing shaking movements of the mounting kit relative to the rail component along the vertical direction and the horizontal direction. Besides, a related rail mounting system is provided.
US11737224B2

An electronic device includes an electronic component having flexibility, a drive circuit substrate, a first support body capable of winding at least a portion of the electronic component around an outer face, and a second support body including a center axis that is the same axis as a rotation axis of the first support body and including an outer periphery having a length smaller than a length of an outer periphery of the first support body, the second support body being capable of winding at least a portion of the external connection cable around an outer face.
US11737209B2

A circuit board includes a first dielectric material, a second dielectric material, a third dielectric material, a first external circuit layer, a second external circuit layer, multiple conductive structures, and a conductive via structure. Dielectric constants of the first, the second and the third dielectric materials are different. The first and the second external circuit layers are respectively disposed on the first and the third dielectric materials. The conductive via structure at least penetrates the first and the second dielectric materials and is electrically connected to the first and the second external circuit layers to define a signal path. The conductive structures are electrically connected to each other and surround the first, the second and the third dielectric materials. The conductive structures are electrically connected to the first and the second external circuit layers to define a ground path surrounding the signal path.
US11737192B2

A lighting effect control method includes: obtaining a video frame image sequence by dividing frames of a to-be-tested video stream; sequentially acquiring one of untraversed video frame images in the video frame image sequence as a testing video frame image; according to a recognition result of the testing video frame image, determining that there is at least one target virtual object in the testing video frame image, and determining state information of the target virtual object in the testing video frame image, wherein the recognition result of the testing video frame image is obtained by performing an image recognition process on the testing video frame image; and controlling the lighting effect of a lighting device based on the state information.
US11737189B1

A two-stage driver supplies current to an LED load. A first stage of the driver generates a bulk voltage. A second stage has a flyback transformer with a primary winding and a secondary winding. The second stage generates an output voltage to cause LED load current. The primary winding is turned on and off by a gating signal. Control logic within the second stage is responsive to initially turning on the driver to perform a startup short circuit test of the output circuit by applying a gating signal with a short on-time and a low switching frequency. If the output circuit is not shorted, the control logic increases the on-time and the switching frequency to detect if an output current is excessive. If the output current is not excessive, the control logic adjusts the on-time and the frequency to provide sufficient current to illuminate the LED load.
US11737174B2

A PTC heating element for an electric heating device includes frame which is made of electrically non-conductive material and which encloses at least one PTC element, conductor tracks electrically connected to the PTC element, and insulating layers bearing, in a heat-conductive manner, against an oppositely disposed main side surface of the PTC element. The frame has contact strips which project over itself and which are electrically conductively connected to the conductor tracks for energizing the PTC element with different polarities. In order to provide an electrically well-insulated PTC heating element allows good heat coupling, s a film respectively covers the outer surfaces of the insulating layers. A corresponding PTC heating element may be provided in a circulation chamber of the electric heating device. In this case, the conductor tracks are electrically connected to the PTC element, protrude through a partition wall of the electric heating device, and are exposed and electrically connected in a connection chamber. The connection chamber is separated by the partition wall from the circulation chamber.
US11737173B2

A method performed by an IRU of a base station system, the base station system comprising the IRU, a BBU connected to the IRU, and a first RH connected to the IRU via a packet data network. The first RH is arranged for wireless transmission in RF of a plurality of antenna carriers to UEs. The method comprises receiving, from the BBU, a plurality of first digital representations of the plurality of antenna carriers of the first RH, each first digital representation representing one antenna carrier, the plurality of first digital representations being received in a baseband frequency range, frequency multiplexing the plurality of first digital representations of the plurality of antenna carriers into a second digital representation over a first bandwidth, and transmitting the second digital representation to the first RH.
US11737160B2

Systems, methods, and apparatus are disclosed for a user equipment. An example method performed by a user equipment includes establishing a connection to a Radio Access Network (RAN) via a first network node. Communications are provided over the connection using Signaling Radio Bearer 1 (SRB1) configured with a New Radio (NR) Packet Data Convergence Protocol (PDCP). After the connection is suspended, the user equipment receives a Radio Resource Control (RRC) connection re-establishment message from a second network node. The connection re-establishment message includes a radioResourceConfigDedicated information element (IE). The user equipment re-establishes the connection to the RAN by applying a Long-Term Evolution (LTE) PDCP configuration to SRB1, performing a radio resource configuration procedure in accordance with the radioResourceConfigDedicated IE, and sending an RRC connection re-establishment complete message to the second network node.
US11737154B2

A patch on interposer (PoINT) package is described with a wireless communications interface. Some examples include an interposer, a main patch attached to the interposer, a main integrated circuit die attached to the patch, a second patch attached to the interposer, and a millimeter wave radio die attached to the second patch and coupled to the main integrated circuit die through the interposer to communicate data between the main die and an external component.
US11737152B2

Provided is a wireless communication terminal that wirelessly communicates. the wireless communication terminal includes: a transceiver for transmitting and receiving a wireless signal; and a processor for processing the wireless signal. The processor is configured to perform a transmission based on a transmission opportunity (TXOP) limit which is a maximum value of a TXOP, which is a time interval in which a wireless communication terminal has a right to initiate a frame exchange sequence in a wireless medium.
US11737151B2

A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for internet of things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology. The present disclosure provides a method and an apparatus for performing a random access by a terminal in a wireless communication system by starting a backoff timer for a random access preamble retransmission, determining whether a criterion to select a contention free random access resource is met during the backoff timer, selecting a random access resource for a transmission of a random access preamble when the criterion is met during the backoff timer, and transmitting, to a base station, the random access preamble in the selected random access resource.
US11737148B2

Apparatuses, systems, and methods for a wireless device to perform 2-step random access procedures. The disclosure identifies techniques for transmitting and receiving downlink connection configuration information, such as a radio resource control message, in a 2-step random access procedure.
US11737144B2

A method including, detecting, by a base station in a wireless communication system, within an RAR window, at least one of multiple first messages from a plurality of user equipments, wherein the plurality of user equipments is permitted to transmit multiple first messages within the RAR window, and wherein each first message includes a PRACH preamble; in response to receiving at least one PRACH preamble in the at least one of multiple first messages, transmitting at least one second message including an RAR downlink channel for each preamble received; receiving at least one third message, from at least one user equipment of the plurality of user equipments, including a beam connection request and transmitting at least one fourth message to the at least one user equipment on the requested beam.
US11737141B2

One wireless communication device includes a transmitter circuit and a control circuit, wherein the control circuit sets a request to send (RTS) frame, and controls the transmitter circuit to transmit the RTS frame via at least one channel excluding a preamble punctured channel. Another wireless communication device includes a transmitter circuit and a control circuit, wherein the control circuit sets an RTS frame, and controls the transmitter circuit to transmit the RTS frame via a plurality of channels including the preamble punctured channel.
US11737132B2

Disclosed herein includes a system, a method, and a device for providing latency sensitive links. A wireless device can receive, from a wireless node, an advertisement message indicating a set of wireless local area network (WLAN) links that support one or more defined latency requirements, a capability of the wireless node to support the set of WLAN links, a plurality of parameters, an operating mode, and a status for the set of WLAN links. The wireless device can send, to the wireless node responsive to the advertisement message, a request to access a first link of the set of WLAN links. The request can indicate a capability of the wireless device to interoperate with the wireless node to use the first link. The wireless device can access the first link of the set of WLAN links if the wireless node accepts the request to access the first link.
US11737123B2

Systems and methods for communicating are described. According to some embodiments, a first device, with at least one second device in a wireless local area network (WLAN) system may allocate at least one resource unit (RU) to the at least one second device and generate an RU allocation subfield defining the allocated at least one RU. In some examples, the allocation of the at least one RU includes allocating a single RU or a multi-RU to a second device and setting a maximum of one multiplexed second device in a single RU or a multi-RU corresponding to less than 242 subcarriers.
US11737122B1

Systems and methods are provided for controlling implementation of network policies in a system including a core network and an open radio access network (O-RAN). The method includes receiving a request for accessing one of multiple network components from an application at a centralized network policy controller. The method additionally includes evaluating the request at the central network policy controller to determine if the request is core related or RAN related and assigning the application to a selected one of the multiple network components based on the evaluation, wherein the selected one is a core component when the request is core-related and the selected one is a RAN component when the request is RAN-related.
US11737121B2

A system may include a mobile ad-hoc network (MANET) including nodes. The nodes may include beacon-based clusterhead (BB-CH) nodes and members. Each of the nodes may be configured to transmit communication data packets and transmit beacons. Each of the nodes may have passive spatial awareness. For each of at least some of the BB-CH nodes having members, a BB-CH node may be configured to compile spatial awareness information of all members of the BB-CH node. The compiled spatial awareness information may include a BB-CH node identification, position-location information (PLI) of the BB-CH node, a quantity of the members, and a member list with PLI. For each of the at least some of the BB-CH nodes, the BB-CH node may be configured to broadcast, via efficient flooding, some or all of the compiled spatial awareness information to every connected node.
US11737119B2

A base station and a user equipment may determine whether to determine a start symbol value representing a start symbol of a physical downlink shared channel (PDSCH) on the basis of a reference point which is different from the start of a slot allocated for the PDSCH of a cell and is based on the subcarrier spacing of the cell and the subcarrier spacing of a scheduling cell for the cell. The base station/user equipment may transmit/receive, through the scheduling cell, the DCI including symbol information on the start symbol value for the PDSCH on the basis of the determination.
US11737116B2

A wireless device may receive one or more radio resource control (RRC) messages comprising configuration parameters for one or more unlicensed cells. The wireless device may selectively monitor a downlink physical control channel (PDCCH) on one of the unlicensed cells, depending on whether there is an uplink transmission or downlink transmission on another unlicensed cell.
US11737107B2

Control information may be used to schedule communications between a wireless device and a base station. The wireless device may monitor control channels associated with one or more cells to receive the control information.
US11737105B2

Methods, systems, and devices for wireless communications are described. A parent wireless node may determine that low latency communications having a latency below a threshold are to be performed with a child wireless node. The parent wireless node may modify, by at least one of the first communication link interface of the parent wireless node, or a second communication link interface of the parent wireless node that is different from the first communication link interface, or a combination thereof, a previously configured resource type for the first communication link interface based at least in part on the low latency communications. The parent wireless node may transmit, from the first communication link interface of the parent wireless node, a grant to the child wireless node indicating that the low latency communications are to be performed.
US11737104B2

Embodiments of the present disclosure provide a method for multiple input multiple output (MIMO) communications. For example, scheduling information is received at a terminal device from a network device, the scheduling information at least indicates physical resource blocks shared by a demodulation reference signal (DMRS) of the terminal device and a further DMRS of at least one further terminal device, and different sub-carriers allocated to the DMRS and the further DMRS in each of physical resource blocks, and the number of physical resource blocks is indivisible by a total number of the terminal device and the at least one further terminal device. The DMRS is generated, and a length of the DMRS is determined based on the number of physical resource blocks and the number of at least one further terminal device. The DMRS is transmitted to the network device on the sub-carriers allocated to the DMRS in the physical resource blocks. A corresponding method implemented at a network device such as a base station, and a terminal device and network device capable of implementing the above methods are also disclosed.
US11737096B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may identify a sidelink bandwidth part configuration for a plurality of sidelink carriers, wherein the sidelink bandwidth part configuration configures one or more sidelink bandwidth parts for each sidelink carrier of the plurality of sidelink carriers. The UE may identify at least one selected sidelink carrier selected from the plurality of sidelink carriers and an active sidelink bandwidth part for each of the at least one selected sidelink carrier from the one or more sidelink bandwidth parts configured for the at least one selected sidelink carrier. The UE may communicate with another UE in the active sidelink bandwidth part on each of the at least one selected sidelink carrier. Numerous other aspects are described.
US11737080B2

Provided is a method, performed by an electronic device, of scheduling a plurality of packets to allocate radio resources to a plurality of packets related to tasks of a plurality of user equipments (UEs) and stacked in a queue, the method including: setting priorities for a plurality of packets stacked in the queue at a first point in time based on a preset scheduling parameter, allocating radio resources to at least some of the plurality of packets for which the priorities are set based on the set priorities, updating the scheduling parameter using at least one artificial intelligence (AI) learning model, and setting the priorities for the plurality of packets stacked in the queue at a second point in time later than the first point in time, based on the updated scheduling parameter.
US11737079B2

The present invention relates to a wireless communication terminal and a wireless communication method for efficiently scheduling simultaneous uplink transmissions of a plurality of terminals. To this end, provided are a wireless communication terminal, the terminal including: a transceiver; and a processor, wherein the processor is configured to: generate an uplink packet, wherein a predetermined field of a MAC header of the uplink packet indicates information on uplink data of the terminal, and transmit the generated uplink packet to a base wireless communication terminal, and a wireless communication method using the same.
US11737067B2

The present disclosure is a novel utility of a software defined radio (SDR) based Distributed Antenna System (DAS) that is field reconfigurable and support multi-modulation schemes (modulation-independent), multi-carriers, multi-frequency bands and multi-channels. The present disclosure enables a high degree of flexibility to manage, control, enhance, facilitate the usage and performance of a distributed wireless network such as flexible simulcast, automatic traffic load-balancing, network and radio resource optimization, network calibration, autonomous/assisted commissioning, carrier pooling, automatic frequency selection, frequency carrier placement, traffic monitoring, traffic tagging, pilot beacon, etc.
US11737066B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive, from a base station, a frequency configuration that indicates at least one default bandwidth associated with a configured bandwidth part (BWP); and communicate with the base station using at least one default beam associated with the at least one default bandwidth of the configured BWP. Numerous other aspects are provided.
US11737062B2

A device obtains a transmission opportunity (TXOP) in a wideband operating bandwidth comprising a primary channel and a plurality of non-primary channels. The device initiates a frame exchange to reserve the TXOP for TXOP sharing. The device also performs a data transmission within the TXOP on one or more of the plurality of non-primary channels. The device then shares the primary channel with a basic service set (BSS) after the frame exchange.
US11737061B2

Methods, systems, and devices for wireless communications are described. A network may manage and configure narrow bandwidth parts (NBWPs) for reduced capability user equipment (UEs) based on data priorities, load conditions, etc. For example, in some cases, a NBWP may be associated with some active time interval (e.g., or a UE may be able to utilize a NBWP for some active time interval). A base station may configure periodic NBWPs (e.g., where NBWPs may be active in time according to some periodicity and start time), semi-persistent NBWPs (e.g., where explicit NBWP activation indications and NBWP deactivation indications may be sent by the base station), aperiodic NBWPs (e.g., where the base station may activate a NBWP for some signaled active time interval), or some combination thereof. Additionally or alternatively, a network may support on-demand NBWP activation, timer (e.g., inactivity timer) based deactivation of NBWPs, etc.
US11737059B2

Certain aspects of the present disclosure provide techniques for slot aggregation in new radio (NR) systems. A method of wireless communication by a user equipment (UE) includes receiving radio resource control (RRC) signaling providing a semi-static configuration for transmission and/or reception of a repeated transport block (TB) and/or a different TB in each of a plurality of aggregated slots. The UE transmits or receives the TBs in the plurality of aggregated slots based on the semi-static configuration. Another method is provided in which the UE transmits and/or receives a demodulation reference signal (DMRS) in each of a plurality of aggregated slots, each DMRS associated with a repeated TB or a different TB in the slot. The UE determines, based on received signaling, whether the DMRS use a same precoder or a different precoder and modulates and/or demodulates the TBs in the plurality of aggregated slots based on the determination.
US11737053B2

Embodiments of this application provide a wireless communication method and a device, to improve flexibility in an aspect of paging or an aspect of broadcast message transmission. The method includes: determining, by a network device, a scheme of performing paging or broadcast message transmission to a terminal device, where the determined scheme is one of a first scheme and a second scheme, where in the first scheme, a first parameter set is used for performing paging or broadcast message transmission at a specific frequency point, and in the second scheme, a second parameter set is used for performing paging or broadcast message transmission at a specific frequency point; and performing, by the network device, paging or broadcast message transmission to the terminal device at the specific frequency point according to the determined scheme.
US11737052B2

Embodiments of the present invention provide a paging determining method. The method includes: determining, by a network device, a first group to which a first terminal device paged on a first paging occasion belongs, where the first group belongs to the M groups; and sending, by the network device, control information based on the first group, where the control information is used to indicate paging information, and the paging information includes a device identifier of the first terminal device. Therefore, reduction of terminal device power consumption can be effectively supported.
US11737046B2

Disclosed herein are methods and systems for using out-of-band spectrum for shared spectrum registration and increased link reliability and capacity. A method for customer premise equipment (CPE) attachment and registration in a shared spectrum system includes attaching, by the CPE to a shared spectrum access point, using an out-of-band spectrum, where the out-of-band spectrum is out-of-band with respect to a shared spectrum of the shared spectrum system, registering, by the CPE with a spectrum access system, using the out-of-band spectrum upon successful attachment with the shared spectrum access point, and communicating, by the CPE, using at least the shared spectrum upon successful registration with the spectrum access system.
US11737035B2

In some embodiments, a wireless device receives a power offset value associated with a difference between transmission powers of different redundancy versions (RVs) of repetition occasions of a transport block. A downlink control information is received that indicates: a sequence of RVs, and a quantity of the repetition occasions. Based on the power offset value and the RVs, a transmission power is determined for one or more repetition occasions of the repetition occasions. One or more repetitions of the transport block are transmitted with the determined transmission power via the one or more repetition occasions.
US11737033B2

Power control in new radio (NR)-to-NR dual connectivity communications is disclosed. A UE, compatible for NR-to-NR dual connectivity, may receive a transmit power configuration and a power allocation configuration. The transmit power configuration identifies the designated reserved power for each of the cell groups participating in the dual connectivity communication. The power allocation configuration identifies to the UE whether to operate access to excess transmission power by either mode 1 rules, which may introduce phase discontinuity into ongoing transmissions, or mode 2 rules, which use a look-ahead functionality to trigger joint determination and allocation of transmission power among known uplink transmissions over a given transmission duration. After the determined transmission power allocation has been made, the UE transmits the dual connectivity transmissions according to the determined power.
US11737032B2

Channel state information (CSI) reporting may be used for wireless communications. CSI reporting may be activated or deactivated. During the activation of CSI reporting and based on one or more criteria, a scheduled uplink transmission may be selected.
US11737028B2

A method, a non-transitory computer readable medium, and a mobile device are disclosed for reducing battery consumption of mobiles devices with location settings. The method includes: enabling a location setting on the mobile device, the location setting having an on state and an off state, the on state being a state in which location services are available to applications on the mobile device and the off state being a state in which location services are not available to applications on the mobile device; checking a battery life of the mobile device; and when the battery life of the mobile device is less than or equal to a preset threshold: changing a status of the location setting on the mobile device to the off state when the mobile device is not running an application that is using the location services; or maintaining the location setting in the on state.
US11737001B2

The present disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for layer 2 relay user equipment (UE) mobility. A relay UE relays data between a first network entity and a remote UE based on a first configuration of the remote UE. The relay UE may receive, from the first network entity on a first connection, a handover request that includes a second configuration for a second network entity or a third configuration for the remote UE. The relay UE determines whether dual active protocol stack radio link control channels are configured for the remote UE based on the first configuration or the third configuration. The relay UE establishes a second connection with the second network entity based on the second configuration, and transmits, to the remote UE, a handover status indicating a result of establishing the second connection with the second network entity.
US11736998B2

A communications apparatus and associated method communicating with at least one cellular network includes a radio transceiver and a processor. The communications apparatus includes a radio transceiver, capable of transmitting or receiving wireless radio frequency signals to or from a cellular network; and a processor. The processor is configured to: receive an incoming call request message that will trigger a Circuit Switch Fall Back (CSFB) procedure or a Evolved Packet System Fall Back (EPS FB) procedure from the cellular network via the radio transceiver, query a user to accept or reject the incoming call request before triggering the CSFB procedure or the EPS FB procedure, and determine whether to trigger the CSFB procedure or the EPS FB procedure based on a response to the query from the user.
US11736996B2

A conditional handover method and apparatus are provided. The method may include: transmitting a measurement report to a source base station, receiving a conditional handover command from the source base station; and when a connection failure occurs, performing a handover procedure in a target cell or a Radio Resource Control (RRC) re-establishment procedure, wherein the conditional handover command comprises a first signal condition, and the first signal condition comprises signal quality of a neighboring cell or a signal quality difference between the neighboring cell and a source cell. A terminal may initiate a handover procedure in a case of a connection failure, thereby increasing a speed of connection recovery after the connection failure, increasing a success rate of connection establishment, reducing interruption of data transmission, and improving user experience.
US11736995B2

An apparatus of a source Radio Access Network (RAN) node, a system, and a method. The apparatus includes one or more processors that configures a user equipment (UE) for a conditional handover of the UE from the source RAN node to a candidate target RAN node based on at least one of a first configuration of the source RAN node or conditions to be met for execution of the conditional handover; and in response to a reconfiguration of the source RAN node to a second configuration, configure the UE for the conditional handover to the candidate target RAN node based on the second configuration by causing transmission of a message to the UE including information based on the second configuration.
US11736992B2

The present disclosure relates to systems and methods for a handover. The methods may include establishing a connection between a vehicle terminal and a first macro evolved Node B (MeNB) and a connection between the vehicle terminal and a secondary evolved Node B (SeNB), the vehicle terminal in a dual connectivity mode with the first MeNB and the SeNB; receiving, by the vehicle terminal, a handover command from the first MeNB; and disconnecting, based on the handover command, the vehicle terminal from the first MeNB and establishing synchronization between the vehicle terminal and a second MeNB, wherein the connection between the vehicle terminal and the SeNB is maintained. The SeNB is a secondary vehicle terminal meeting a preset condition or an SeNB installed at a fixed location.
US11736988B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on 5G communication technology and IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A handover method of a terminal in a mobile communication system according to the present disclosure includes transmitting UE capability information including a random access-free handover indicator to a first base station, receiving a handover command message from the first base station, and transmitting, when the handover command message includes uplink resource information, a handover complete message to a second base station based on the uplink resource information.
US11736984B2

A method or apparatus for wireless communication at a wireless device. The wireless device transmits sidelink control information (SCI) indicating an aperiodic resource reservation and indicating a time gap between aperiodic resource reservations based at least in part on supplemental bits. The apparatus transmits a sidelink message based on the aperiodic resource reservation on a resource pool that supports periodic resource reservation.
US11736983B2

A base station transmits a rate recommendation to a first user equipment (UE) device. The rate recommendation is to be used for a Voice over Long-Term Evolution (VoLTE) call between the first UE device and a second UE device. In some instances, the first UE device and the second UE device negotiate the rate to be used for the VoLTE call, based on the rate recommended by the base station. If the negotiated rate is supported by the base station and/or matches a supported codec rate, the UE devices implement the rate and provide rate feedback to the base station.
US11736973B2

The subject application relates to telecommunication networks and more particularly, to a method and system for managing and allocating wireless network resources to optimize User satisfaction. One aspect of the invention is directed to a system comprising a wireless base station; a user device; and a wireless network connecting said wireless base-station to said user device; said wireless base station being operable: to employ a ‘zone of tolerance’ to model user satisfaction; and to respond to a request from said user device to access network resources, by allocating network resources based on said ‘zone of tolerance’ model. Other aspects of the invention are also shown and described including a system and method of allocating network resources based on an AI-Enabled and Big Data-Driven Multi-Objective Optimization Process.
US11736970B1

Apparatus and methods concerning simulation of call quality are disclosed. In an example embodiment, computing server is communicatively coupled to a server. The computing server is configured to receive a first set of data which may include audio of a call routed by the server. The computing server also includes a processing circuit configured to characterize a post-transmission quality state of the first set of data. The processing circuit is also configured to generate a second set of data including audio that is different from the audio of the call and data including characteristics indicative of the post-transmission quality state of a first set of data. The processing circuitry may configured to use the second set of data to provide security, protect the confidentiality and privacy, and/or monitor changes of behavior/quality for different audio CODECs, encryption, bit-rate, etc.
US11736968B2

The present application describes a user equipment including a processor and a memory, where the memory stores computer-executable instructions that, when executed by the processor, cause the user equipment to perform a set of instructions. The instructions include transmitting, to a network, a message requesting to modify or establish flow that is not to be charged to the user equipment. The instructions also include receiving, from the network, an indication based on the message request. The instructions further include determining, based on the indication, whether to make the flow being associated with the message.
US11736960B2

A method, a device, and a non-transitory storage medium provide a node placement service. The node placement service may generate geo-bins pertaining to a radio access network device, a sector of the radio access network device, or a sub-sector. The node placement service may generate time values for the geo-bins based on network information associated with end devices and the geo-bins. The node placement service may also generate return on investment values for the geo-bins based on the network information. The node placement service may use the time values, the return on investment values, or both for radio frequency design of a geo-bin.
US11736956B2

A base station includes a first unit that performs radio transmission of a signal to a terminal, a second unit, and an interface that connects the first unit to the second unit. In order to determine which of the first unit and the second unit is a unit that performs precoding, information indicating whether or not at least one of the first unit and the second unit has a function of the precoding is sent over the interface.
US11736954B2

The present disclosure relates to capacity planning methods and apparatus. One example method includes matching a distribution model based on a quantity of service packets in each transmission time interval within specified duration to obtain a matched first distribution model, matching a distribution model based on a length of the service packets to obtain a second distribution model, and performing bandwidth control based on the first distribution model, the second distribution model, a distribution parameter of the first distribution model, and a distribution parameter of the second distribution model.
US11736951B2

Embodiments of the present disclosure relate to a method, terminal device and apparatus for UL data transmission and a method, network device and apparatus for UL data scheduling. In an embodiment of the present disclosure, the method of DL data transmission may comprise receiving, from a network device, information on an ending position of uplink data transmission on the unlicensed band; and determining the ending position of uplink data transmission from the information on the starting position of uplink data transmission, wherein the determined ending position of uplink data transmission is associated with a carrier numerology used by the terminal device. With embodiments of the present disclosure, it could enable the UL data transmission on the unlicensed band in the NR system and thus improve the performance of the NR system.
US11736927B2

The techniques introduced here provide for network assisted device-to-device communication for peer-to-peer applications. The techniques include registering a user's peer-to-peer application identifier with a peer-to-peer application server, registering a peer-to-peer application with a device-to-device server, sending a peer-to-peer service request to the peer-to-peer application server, and receiving network assistance in discovering a peer with the desired P2P content/service and establishing a device-to-device communication arrangement for exchange of peer-to-peer services.
US11736921B2

The present application provides a screen projection method, a receiving end device, and a sending end device. The receiving end device performs active wireless scanning and searching on the sending end device, and when the sending end device is scanned, establishes a wireless connection with the sending end device; and once the wireless connection is established, the receiving end device automatically sends a screen projection code to the connected sending end device, and the sending end device may prompt a user to perform a screen projection operation by means of displaying the screen projection code. In this process, there is no need for the user to perform complicated manual operations, the sending end device can automatically acquire the screen projection code, and prompts the user to perform the screen projection operation in a timely manner, thereby improving the timeliness of the screen projection operation.
US11736919B2

A method for receiving audio data using Bluetooth Low Energy technology, the method performed by a client device comprising: receiving, from a server device, a first advertisement message including information for providing an audio streaming service; receiving, from the server device, a second advertisement message including synchronization information for synchronization between the client device and the server device; receiving, from the server device, a third advertisement message including an indicator representing that audio data of the audio streaming service is grouped with audio data information for the audio data and transmitted; receiving, from the server device, broadcast audio data including the grouped audio data and the audio data information based on the indicator, through an isochronous channel; obtaining, from an user, specific information related to whether to permit a provision of the audio streaming service based on the audio data information; and decoding the audio data based on the specific information representing permission to provide the audio data.
US11736917B2

Methods and systems are provided for integratedly managing a vehicle operation state. A vehicle integration management method performed by a server implemented by using a computer may include receiving vehicle operation data related to an operation state of the vehicle from a vehicle terminal mounted or embedded in the vehicle; and providing a service related to the vehicle operation data through a dedicated application on a user terminal used by a user of the vehicle. The providing may provide at least one of an operation report, a parking impact notification, and an accident situation notification based on the vehicle operation data in association with the application.
US11736910B2

A method for covertly acquiring data. Information about an activity associated with a first hand-held device is monitored by initiating covert application software in a first configuration in which a log-in must first be input to the first device. When running the software in the first configuration, no image which overtly exhibits a self-evident association with the software can be viewed on the display to identify the software or indicate that the software is running on the client. Prior to initiating monitoring with the software, a feature having no self-evident association with the covert application software can be accessed on a touch screen display of the device to initiate the software.
US11736902B2

A method and wireless devices (WDs) for geo-location of wireless devices are disclosed. According to one aspect, a method in a first WD includes: transmitting a sequence of ranging signals and receiving a plurality of ranging response signals from a second WD, the ranging response signals being responsive to the ranging signals. For each of the plurality of ranging response signals, a received sequence of bits is determined. A correlation between the received sequence of bits and an expected sequence of bits is determined. The method also includes determining a subset of the plurality of received sequences of bits deemed not to arise from noise, and determining the subset being based at least in part on the correlations. The method also includes determining a distance between the first WD and the second WD based at least in part on a plurality of received sequences in the subset.
US11736901B2

In an example, the present technique includes a method for capturing information from a spatial region to monitor human activities and create a spatial map of the spatial region. In an example, the technique allows a user of a cell phone to move from one location to another location and be tracked using rf backscattering, and each location being identified by the user by communicating a label via a cell phone or other mobile device.
US11736896B2

Methods and systems are discussed for location-based guidance based on interior conditions at a plurality of locations. For example, the system may receive, from a user device of a user, a user request to access a first service. The system may retrieve a plurality of locations that provide the first service. The system may retrieve an average density for respective first queuing areas at each of the plurality of locations at a first time interval, wherein the respective first queuing areas correspond to respective portions at each of the plurality of locations reserved for queuing users for the first service. The system may determine whether the average density for the respective first queuing areas at each of the plurality of locations at the first time interval exceeds a threshold average density. The system may, in response to determining a subset of the plurality of locations where the average density for the respective first queuing areas at the first time interval exceed the threshold average density, generate for display, on the user device, a recommendation for a location from the subset at which to access the first service at the first time interval.
US11736895B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a network node may receive a first set of ranging measurements based at least in part on a first one or more positioning reference signals communicated over a sidelink between a pedestrian user equipment (P-UE) and a vehicle UE (V-UE). The network node may receive a second set of ranging measurements based at least in part on a second one or more positioning reference signals communicated over an access link between the P-UE and one or more base stations. The network node may transmit, to the P-UE, an estimated position of the P-UE. For example, in some aspects, the estimated position of the P-UE may be based at least in part on the first set of ranging measurements and the second set of ranging measurements. Numerous other aspects are provided.
US11736885B2

A method expedites processing and playing of binaural sound during an electronic communication between a first user and a second user. An electronic device of the first user convolves sound into binaural sound for the second user before the binaural sound transmits to the electronic device of the second user. In this way, the binaural sound is already convolved and ready to play upon receipt at the electronic device of the second user.
US11736881B2

A virtual reproduction signal generation unit generates a virtual reproduction signal based on a sound pickup signal of a stereophonic sound at a listening position in a compartment, assuming that virtual speakers are respectively located at portions of Np positions in a vehicle, the virtual reproduction signal causing the virtual speakers of the Np positions to reproduce the stereophonic sound. A virtual prediction signal generation unit generates a virtual prediction signal based on the virtual reproduction signal and an information representing a change of acoustic characteristics when at least part of the portions of the Np positions is changed, the virtual prediction signal causing the virtual speakers of the Np positions to output a predicted sound at the listening position. An output signal generation unit generates an output signal based on the virtual prediction signal, the output signal causing speakers of a plurality of positions to output the predicted sound.
US11736878B2

Example techniques may involve performing aspects of a spatial calibration. An example implementation may include detecting a trigger condition that initiates calibration of a media playback system including multiple audio drivers that form multiple sound axes, each sound axis corresponding to a respective channel of multi-channel audio content The implementation may also include causing the multiple audio drivers to emit calibration audio that is divided into constituent frames, the multiple sound axes emitting calibration audio during respective slots of each constituent frame. The implementation may further include recording the emitted calibration audio. The implementation may include causing delays for each sound axis of the multiple sound axes to be determined, the determined delay for each sound axis based on the slots of recorded calibration audio corresponding to the sound axes and causing the multiple sound axes to be calibrated.
US11736877B2

An example computing device is configured to perform functions including receiving calibration data corresponding respectively to a plurality of playback devices, where each playback device in the plurality of playback devices is located in a respective playback environment other than a first playback environment. The functions also include receiving playback device characteristic data respectively indicating at least one playback device characteristic for each playback device of the plurality of playback devices. The functions also include, based on at least the calibration data and the playback device characteristic data, determining updated playback device configuration information and transmitting data indicating the updated playback device configuration information to a given playback device located in the first environment.
US11736876B2

A computer-implemented method and system for performing testing of audio equipment in a conference room, the method executed by one or more processors, comprising: (a) commissioning the conference room with a set of audio video equipment, the set of audio equipment comprising one or more loudspeakers, one or more microphones, and audio signal processing equipment that includes at least an acoustic echo cancellation function; (b) determining an initial audio performance level in the conference room, and storing the initial audio performance level (IAPL); (c) determining that sound quality testing of the audio equipment in the conference room should be performed; (d) disabling the acoustic echo cancellation function in the audio equipment of the conference room such that an output from each of the one or more loudspeakers is not removed from a respective microphone output signal; (e) generating an electrical stimulus test signal and transmitting it to the one or more loudspeakers in the audio equipment of the conference room; (f) receiving an acoustic audio stimulus test signal generated by each of the one or more loudspeakers from each of the one or more microphones, and analyzing each of the received acoustic audio stimulus test signals to generate a current audio performance level (CAPL); (g) comparing the CAPL to the IAPL; and (h) determining if the audio equipment in the conference room passes or fails the sound quality test based on the comparison of the CAPL to the IAPL.
US11736871B2

The inventive concept relates to a smart hearing device for providing a control parameter and feedback for a natural language or a non-natural language determined by analyzing sound data, which includes a receiving unit that receives sound data of a voice signal and a noise signal from a first microphone and a second microphone being formed at one side, a determination unit that compares digital flow of the sound data with a previously stored graph pattern to determine a natural language or a non-natural language for the sound data, a processing unit that matches similar data for the determined natural language or non-natural language, based on a database including a natural language area and a non-natural language area, and a providing unit that provides a user with a one-sided sound converted by setting a control parameter in a natural language or a non-natural language specified according to the matched similar data.
US11736866B2

The present application relates to structures for supporting mechanical, electrical and/or electromechanical components, devices and/or systems and to methods of fabricating such structures. The application describes a primary die comprising an aperture extending through the die. The aperture is suitable for receiving a secondary die. A secondary die may be provided within the aperture of the primary die.
US11736862B1

An audio system and method of using the audio system to augment spatial audio rendition is described. The audio system can include a device to receive user inputs designating positions on an augmented reality view of a listening environment. Sound source icons can be presented in the augmented reality view at the designated positions. The sound source icons can visually represent sound sources at locations in the listening environment that correspond to, but are different than, the positions. One or more processors of the audio system can apply head-related transfer functions, which correspond to the locations in the listening environment, to audio input signals to generate binaural audio signals. The audio system can include a headset that uses the binaural audio signals to render spatialized audio localizing sounds to the locations in the listening environment. Other aspects are also described and claimed.
US11736860B2

Multiple aspects of systems and methods for voice control and related features and functionality for various embodiments of media playback devices, networked microphone devices, microphone-equipped media playback devices, and speaker-equipped networked microphone devices are disclosed and described herein, including but not limited to designating and managing default networked devices, audio response playback, room-corrected voice detection, content mixing, music service selection, metadata exchange between networked playback systems and networked microphone systems, handling loss of pairing between networked devices, actions based on user identification, and other voice control of networked devices.
US11736859B2

An acoustic waveguide in accordance with one or more embodiments of the present technology that comprises a housing having a proximal end with an inlet aperture and a distal end with an outlet aperture, and a mounting flange positioned at the proximal end and configured to acoustically couple a driver to inlet aperture. A plurality of sound channels extend through the housing and acoustically couple the inlet aperture to the outlet aperture. Each sound channel at least partially defining a sound path has an acoustic length, wherein at least one of the sound paths of the plurality of sound channels has a bend angle that exceeds 180 degrees.
US11736845B2

A microphone component and a method for fabricating a microphone component are disclosed. In an embodiment, a microphone component includes a membrane and a backplate, wherein the membrane includes a plurality of holes, and wherein the holes have diameters smaller than 5 μm.
US11736843B2

A display device includes a display panel including a display layer including light-emitting elements disposed on a substrate, and a sensor electrode layer disposed on the display layer. The sensor electrode layer includes a first sound electrode and a second sound electrode; a vibration layer electrically contacting the first sound electrode and the second sound electrode and being deformed in response to a first sound driving voltage applied to the first sound electrode and a second sound driving voltage applied to the second sound electrode; and sensor electrodes disposed on the vibration layer. The sensor electrodes sense an input.
US11736842B2

A speaker horn with rotatable radiation characteristics has a base body in the form of an opening funnel with a rotationally symmetrical inner wall in the radiation area and an insert mounted so that it can rotate relative to the base body. The insert covers part of the rotationally symmetrical inner wall acoustically and causes the rotatable radiation characteristic of the speaker horn.
US11736841B2

Apparatus and methods for unified high-bandwidth, low-latency data services provided with enhanced user mobility. In one embodiment, a network architecture having service delivery over at least portions of extant infrastructure (e.g., a hybrid fiber coax infrastructure) is disclosed, which includes standards-compliant ultra-low latency and high data rate services (e.g., 5G NR services) via a common service provider. Premises devices are used to provide the 5G-based services to users at a given premises and thereabouts. In another variant, local area (e.g., “pole mounted”) radio devices are used to provide supplemental RF coverage, including during mobility scenarios. The 5G-capable network enables uninterrupted and “seamless” exchange of data at a client device by utilizing a common waveform protocol (e.g., 3GPP-based) at a premises device and an external radio device to communicate with a client device at different locations and times while the device is moving between inside and outside the premises.
US11736818B2

Embodiments disclosed herein include a diagnostic substrate, comprising a baseplate, and a first plurality of image sensors on the baseplate, where the first plurality of image sensors are oriented horizontal to the baseplate. In an embodiment, the diagnostic substrate further comprises a second plurality of image sensors on the baseplate, where the second plurality of image sensors are oriented at a non-orthogonal angle to the baseplate. In an embodiment, the diagnostic substrate further comprises a printed circuit board (PCB) on the baseplate, and a controller on the baseplate, where the controller is communicatively coupled to the first plurality of image sensors and the second plurality of image sensors by the PCB. In an embodiment, the diagnostic substrate further comprises a diffuser lid over the baseplate, the PCB, and the controller.
US11736815B2

Video systems with video receivers for receiving video signals transmitted in analog format over a video link are described. An example video receiver includes an interferer identification circuit and an interferer removal circuit. The interferer identification circuit is configured to identify a periodic interference signal (e.g., from one or more of vertical blanking intervals (VBIs)) of a received video signal. The interferer removal circuit is configured to generate a filtered video signal, where generation of the filtered video signal includes, for each line of a given frame of the received video signal, generating an adjusted interference signal by adjusting a phase of the identified interference signal to match a phase of a periodic noise signal in at least a portion of a horizontal blanking interval (HBI) associated with the line, and subtracting the adjusted interference signal from a plurality of active pixel values of the line.
US11736795B2

A shooting method includes: obtaining a preview image collected by an image collection device; detecting a first relative distance and a first relative angle between a foreground of the preview image and the image collection device, and detecting a second relative distance and a second relative angle between a background of the preview image and the image collection device; determining a target shooting position of the image collection device based on the first relative distance, the first relative angle, the second relative distance and the second relative angle, wherein a picture obtained by shooting the foreground and the background at the target shooting position has a composition that matches with a set composition strategy; and displaying a prompt message about the target shooting position for prompting the image collection device to move to the target shooting position.
US11736794B2

An imaging apparatus includes: a detection unit configured to detect a position of a subject, which is a target of trimming in an image; a setting unit configured to set a determination frame that separates a first region, which includes an edge of the image, and a second region, which is a region of the image excluding the first region, from each other; and a generation unit configured to generate a trimming image to notify a user that the subject is likely to move out of an imaging range of the image, in a case where the position of the subject is included in the first region.
US11736774B2

Described herein are techniques for seamlessly transitioning streaming content between user devices. In some embodiments, such techniques may be performed by a content transition platform. The techniques may comprise receiving a transition request including a set of identifiers for a plurality of user devices that includes at least a first user device from which the transition request originated. The techniques may further comprise identifying one or more active communication sessions associated with the plurality of user devices, each of which comprise a series of communications between one of the plurality of user devices and a content provider. The techniques may further comprise determining, based on the one or more active communication sessions, a second user device of the plurality of user devices, and transitioning an active communication session of the one or more active communication sessions between the first user device and the second user device.
US11736769B2

Various approaches relate to user defined content filtering in media playing devices of undesirable content represented in stored and real-time content from content providers. For example, video, image, and/or audio data can be analyzed to identify and classify content included in the data using various classification models and object and text recognition approaches. Thereafter, the identification and classification can be used to control presentation and/or access to the content and/or portions of the content. For example, based on the classification, portions of the content can be modified (e.g., replaced, removed, degraded, etc.) using one or more techniques (e.g., media replacement, media removal, media degradation, etc.) and then presented.
US11736763B2

Detection of whether a video is a fake video derived from an original video and altered is undertaken using a block chain that either forbids adding to the block chain copies of original videos that have been altered or indicating in the block chain that an altered video has been altered. Image fingerprinting techniques are described for determining whether video sought to be added to block chain has been altered.
US11736759B2

A transmitting apparatus including circuitry configured to generate caption data corresponding to content data and having elements defined in Extensible Markup Language (XML), and output the content data and the generated caption data to a reproducing device.
US11736757B2

A content overlay system for a digital device is described. The content overlay system includes a processing module configured to monitor events of the digital device to generate data indicative of the activation of and/or use of one or more applications of the digital device. The processing module is configured to process the generated data to determine timing data indicative of when to overlay content on an active window and/or to determine what content to overlay. An overlay generation module is configured for placing an overlaid window in front of the active streaming window or application and for displaying content in the overlaid window. The overlay generation module being configured to generate the overlaid window and display content from an overlaid content server according to the determined timing data and/or determined content.
US11736756B2

A method for providing visual sequences using one or more images comprising: receiving one or more person images of showing atleast one face, using a human body information to identify requirement of the other body part/s; receiving atleast one image or photograph of other human body part/s based on identified requirement; processing the image/s of the person with the image/s of other human body part/s using the human body information to generate a body model of the person, the virtual model comprises face of the person, receiving a message to be enacted by the person, wherein the message comprises atleast a text or a emotional and movement command, processing the message to extract or receive an audio data related to voice of the person, and a facial movement data related to expression to be carried on face of the person, processing the body model, the audio data, and the facial movement data, and generating an animation of the body model of the person enacting the message, Wherein emotional and movement command is a GUI or multimedia based instruction to invoke the generation of facial expression/s and or body part/s movement.
US11736752B2

The disclosure provides a display apparatus including a controller and a method for displaying view history in the display apparatus. The controller is configured to cause the display apparatus to perform: after logging in to a cloud account on the display apparatus, in response to a command for watching a first video item on the display of the display apparatus, generating a first view history record corresponding to the first video item; sending the first view history record to a server; inserting the first view history record into a first place of a second history information list; in response to receiving a command for displaying a view history interface, sending a request for view history to the server; in response to receiving first history information list, displaying preset images of first view history records included in the received first history information list on the view history interface.
US11736749B2

This application discloses an interactive service processing method and system, a device, and a storage medium, and belongs to the field of computer technologies. The method includes acquiring a video stream and interactive information corresponding to the video stream, the interactive information comprising an interactive timestamp and interactive data; determining a transmission mode corresponding to the interactive information, the transmission mode comprising one of transmission based on a network channel and transmission with a video stream fragment as a medium; transmitting the video stream to a target terminal; and transmitting the interactive information to the target terminal based on the transmission mode corresponding to the interactive information, the target terminal being configured to process interactive service on the video stream according to the interactive timestamp and the interactive data in the interactive information.
US11736733B2

The present disclosure provides a computer-implemented method for encoding video. The method includes: determining whether a coded video sequence (CVS) contains equal number of profile, tier and level (PTL) syntax structures and output layer sets (OLSs); and in response to the CVS containing equal number of PTL syntax structures and OLSs, coding the bitstream without signaling a first PTL syntax element specifying an index, to a list of PTL syntax structures in the VPS, of a PTL syntax structure that applies to a corresponding OLS in the VPS.
US11736726B2

Aspects of the disclosure provide methods, apparatuses, and a non-transitory computer-readable medium for point cloud compression and decompression. In a method, an octree partitioning structure for a bounding box of a point cloud is determined. Whether parallel encoding is to be performed on occupancy codes of nodes in a range of one or more partitioning depths in the octree partitioning structure is determined. The parallel encoding on the occupancy codes of the nodes is performed in response to the parallel encoding being determined to be performed on the occupancy codes of the nodes in the range of the one or more partitioning depths in the octree partitioning structure. A coded bitstream is generated based on the encoded occupancy codes of the nodes. The coded bitstream includes syntax information that indicates whether parallel decoding is to be performed on the occupancy codes of the nodes in the range.
US11736715B2

This application provides video picture prediction methods and apparatuses. In an implementation, a method for encoding of video picture comprises generating a bitstream for video signals, the bitstream comprises a plurality of syntax elements, wherein the plurality of syntax elements comprises a first identifier indicating that an affine motion model based motion compensation is enabled for a video sequence including a picture block to be processed, wherein a second identifier is conditionally signaled at least based on a value of the first identifier, wherein a false value of the second identifier indicates that a 6-parameter affine motion model based motion compensation is disabled for the video sequence, and wherein a true value of the second identifier indicates that the 6-parameter affine motion model based motion compensation is enabled for the video sequence.
US11736709B2

Aspects of the disclosure provide a method and an apparatus for video coding. In some examples, an apparatus includes processing circuitry that receives a bit stream that includes coded information representing a bin of a syntax element for a current block in a picture. The bin of the syntax element indicates whether a local illumination compensation (LIC) process is applied to code the current block. The processing circuitry selects a context model from multiple candidate context models applicable to coding of the syntax element, according to at least a coding characteristic of a region neighboring the current block, and decodes the coded information according to the selected context model to obtain the bin of the syntax element. The processing circuitry reconstructs the current block in response to the bin of the syntax element.
US11736707B2

The present disclosure provides a method for decoding a video signal including a current block based on an affine motion prediction mode (affine mode, AF mode), the method including: checking whether the AF mode is applied to the current block, the AF mode representing a motion prediction mode using an affine motion model; checking whether an AF4 mode is used when the AF mode is applied to the current block, the AF4 mode representing a mode in which a motion vector is predicted using four parameters constituting the affine motion model; generating a motion vector predictor using the four parameters when the AF4 mode is used and generating a motion vector predictor using six parameters constituting the affine motion model when the AF4 mode is not used; and obtaining a motion vector of the current block based on the motion vector predictor.
US11736704B1

Video encoding methods and apparatuses for Sum of Absolute Transformed Difference (SATD) computation by folded Hadamard transform circuits include splitting a current block into SATD blocks, receiving input data associated with a first block of a first SATD block in a first cycle and receiving input data associated with a second block of the first SATD block in a second cycle, and performing calculations for the first block by shared Hadamard transform circuits in the first cycle and performing calculations for the second block by the shared Hadamard transform circuits in the second cycle. Each shared Hadamard transform circuit is a first part of each folded Hadamard transform circuit. The video encoding methods and apparatuses further perform calculations for the entire SATD block by a final part of each folded Hadamard transform circuit to generate a final SATD result of the first SATD block for encoding.
US11736697B2

A method of video processing includes making a determination for a conversion between a video region of a video and a bitstream representation of the video to use a cross-component adaptive loop filtering (CC-ALF) tool for refining chroma samples values using luma sample values; and performing the conversion based on the determination, wherein the refining includes correcting the chroma sample values using a final refinement that is a further refinement of a first refinement value determined by selectively filtering the luma sample values.
US11736696B2

The present invention relates to a method for encoding and decoding a quantized matrix and an apparatus using same, the method for encoding a quantized matrix according to the present invention comprising the steps of: determining a quantization matrix to be used for quantization and quantizing; determining the prediction method used for the quantization of the quantization matrix; and encoding quantization matrix information on the basis of the determined prediction method, wherein the prediction method can be either a prediction method between coefficients in the quantization matrix or a duplicate of the quantization matrix.
US11736684B2

According to an aspect of an invention, a method for signaling reference pictures in video coding is disclosed. The method comprises: decoding a number of entries in a reference picture list syntax structure; decoding a number of reference index active minus one syntax in a slice header, if the number of entries is greater than one; and deriving an active variable by using the number of reference index active minus one syntax.
US11736682B2

Provided are a video decoding method and apparatus which, during video encoding and decoding processes, determine whether a current block is in contact with an upper boundary of a largest coding unit including the current block, when it is determined that the current block is in contact with the upper boundary of the largest coding unit, determine an upper reference line of the current block as one reference line, when it is determined that the current block is not in contact with the upper boundary of the largest coding unit, determine the upper reference line of the current block based on N reference lines, and use the determined upper reference line.
US11736675B2

Methods are described herein for signaling information regarding different viewpoints in a multi-viewpoint omnidirectional media presentation. In some embodiments, a container file (which may use the ISO Base Media File Format) is generated containing several tracks. The tracks are grouped using a track-group identifier, where each track-group identifier is associated with a different viewpoint. In some embodiments, a manifest (such as an MPEG-DASFI MPD) is generated, where the manifest includes viewpoint identifiers that identify the viewpoint associated with each stream. In some embodiments, metadata included in a container file and/or in a manifest provides information on the position of each viewpoint, the intervals during which each viewpoint is available, transition effects for transitions between viewpoints, and/or recommended projection formats for corresponding field-of-view ranges.
US11736670B2

A system is provided for generating video content with hue-preservation in virtual production. The system comprises a memory for storing instructions and a processor configured to execute the instructions. Based on the executed instructions, the processor is further configured to control a saturation of scene linear data based on mapping of a first color gamut corresponding to a first encoding format of raw data to a second color gamut corresponding to a defined color space. The processor is further configured to determine a standard dynamic range (SDR) video content in the defined color space based on the scene linear data. Based on a scaling factor that is applied to three primary color values that describe the first color gamut, hue of the SDR video content is preserved.
US11736669B2

An image projection device which is mounted on a vehicle or worn by a driver of the vehicle includes a control unit and a projection unit. The control unit accepts a selection for specifying a particular user, detects a current location, acquires an image showing at least a part of an appearance of the particular user, which is captured when the particular user has previously driven a particular user's vehicle at a location which is the same as or near to the current location, and projects the image onto a driver's seat of the vehicle by the projection unit.
US11736666B2

A detection system is disclosed herein, the detection system includes a first detection device. The first detection device operates at a first operating power to capture a first image data. Wherein, when the first detection device determines there are differences between a plurality of first frames in the first image data, the first detection device switches to operate at a second operating power to capture a second image data, and the first operating power is less than the second operating power. And the first detection device determines whether the second image data matches an identification data to generate a determining result, and generates a notification signal according to the determining result.
US11736652B2

An apparatus includes, a change unit configured to change a pixel value of an edge pixel indicating an edge portion of an image based on the image data having the quantized color, wherein, in a case where the pixel value of the edge pixel is a pixel value changed by color reduction processing to decrease a luminance, the change unit changes the pixel value of the edge pixel to a pixel value of a pixel having a highest luminance among pixels surrounding the edge pixel, and wherein, in a case where the pixel value of the edge pixel is a pixel value changed by the color reduction processing to increase a luminance, the change unit changes the pixel value of the edge pixel to a pixel value of a pixel having a lowest luminance among pixels surrounding the edge pixel.
US11736632B2

Embodiments of the present disclosure provide a device monitoring method, an apparatus, a server, and a storage medium. The method includes receiving an authorization code, where the authorization code includes first information; the first information is configured to indicate a first value; and the first value is a maximum quantity of image forming devices capable of being monitored by a device monitoring system which is activated by the authorization code; determining the first value according to the authorization code; and configuring a first parameter value according to the first value, where the first parameter value is configured to record the maximum quantity of image forming devices capable of being monitored. The present disclosure reduces the data processing amount of the server where the device monitoring system is located, improves the monitoring effect of the device monitoring system on the image forming device and improves the user experience.
US11736627B2

A sheet conveying device includes a sheet placement table, a sheet discharge table, a conveyance mechanism, raising/lowering mechanism, and a raising/lowering control portion. The sheet discharge table is located below the sheet placement table. The conveyance mechanism conveys a sheet placed on the sheet placement table onto the sheet discharge table via an execution position at which image processing is executed by an image processing portion. The raising/lowering mechanism raises and lowers the sheet placement table. The raising/lowering control portion controls the raising/lowering mechanism to lower the sheet placement table when a human detection sensor configured to detect a human in a detection region has detected a human in the detection region.
US11736625B1

An image forming apparatus that forms an image on a recording medium includes: an image forming unit that forms an image on a recording medium and is capable of forming an image for diagnosis, which is an image used for diagnosis of the image forming apparatus; and an adding unit that adds, to a recording medium on which the image for diagnosis has been formed by the image forming unit, information for control used to control output of a reading result from an apparatus used to read the recording medium, the reading result being obtained by reading the recording medium by the apparatus.
US11736622B2

The present disclosure provides details on an intermediary service bureau (ISB) system which includes an ISB center that acts as an intermediary communication center between communication devices used by correctional facilities and contract providers. The ISB records communications, stores security data, and provides front end processing to facilitate an inmate to communicate with an outside party by way of a contract provider. Further, the ISB provides accounting services for inmates and friends and family that use services provided the contract provider. The contract provider provides security and routing services for the ISB by obtaining data from the ISB and updating data at the ISB according to the communications.
US11736609B2

Certain aspects of the present disclosure provide a system for obtaining electronic data from a network server accessible. The system comprises a communication device to electronically access an automated phone system via a telephone number and a memory circuit that stores a configuration file and a log file. The system further comprises a processor that identifies a record that includes a unique identifier for an entity and data to compare with corresponding data from the automated phone system. The processor is further configured to access and navigate the phone menu based on the configuration file and input a unique sequence of digits based on the instructions in the configuration file. The processor is also configured to obtain an audio message from the automated phone system, convert the audio message to a corresponding text message, and determine whether the corresponding text message indicates an error or includes the corresponding data.
US11736607B1

Various example implementations are directed to circuits, apparatuses, and methods for providing data communications services such as voice-over-IP (VoIP). According to an example embodiment, an apparatus includes one or more VoIP servers configured and arranged to route VoIP calls to and from users of a plurality of customer accounts. Each customer account has a respective plurality of users and a respective settings file. For each of the customer accounts, a processing circuit communicatively coupled to the VoIP servers, records an audio portion of a VoIP call to or from a user of the customer account in response to the VoIP call satisfying a set of recording criteria specified in the settings file for the customer account. The recording criteria for at least one of the customer accounts includes account-level settings for selecting VoIP calls to be recorded and sets of user-level settings indicating criteria for preventing recording of VoIP calls of the individual users.
US11736606B2

Embodiments of the present invention relate to the field of communications technologies, and provide a method for controlling a screen of a mobile terminal, and an apparatus, to resolve a prior-art problem of relatively low accuracy of controlling a screen of a mobile terminal to be turned on or turned off. The method includes: obtaining, by a mobile terminal, a current motion parameter of the mobile terminal, and determining whether the motion parameter meets a pick-up parameter threshold or a put-down parameter threshold; when the motion parameter meets the pick-up parameter threshold, determining that the mobile terminal is picked up; obtaining a sight line parameter of a user; and when it is determined that a visual center of the user is on a screen of the mobile terminal and the screen is in an off state, switching the screen to an on state.
US11736595B2

A system and related method exchange messages under the control of a messaging client. The method comprises splitting a content of a source message into a plurality of fragments defined by corresponding portions of its content associated with different recipients of the message. A plurality of transport messages are generated, each comprising one or more of the fragments associated with the recipients. The transport messages are submitted to a messaging server for causing it to provide the transport messages to corresponding further messaging clients of the recipients for their aggregation. A computer program and a computer program product for performing the method are also provided.
US11736589B2

A sub-system and method for a media processing system including a first entity and a second entity is provided. The method includes receiving, by the first entity of the media processing system from the second entity of the media processing system, a request, including a parameter having a value, to perform an action with the first entity by using the value of the parameter; and transmitting, by the first entity of the media processing system to the second entity, an acknowledgement that indicates whether the value of the parameter is accepted by the first entity to perform the action.
US11736588B2

Techniques for heterogenous video editing across storage platforms are disclosed, including: mapping a first mount in a local system to a first location in a first type of storage system, the first location including a first representation of the media object; mapping a second mount in the local system to a second location in a second type of file system, the second location including a second representation of the media object that is timecode-aligned with the first representation of the media object, the second representation being different from the first representation; and providing the first mount in the local system and the second mount in the local system to the media editing application, to enable the media editing application to switch between the first representation of the media object and the second representation of the media object via the local system.
US11736583B2

Methods and apparatus to monitor media presentations are disclosed. Disclosed example apparatus include memory, instructions, and at least one processor to execute the instructions to at least receive demographic information from a user, transmit the demographic information to a central facility, cause storage of a consent identifier in a pasteboard of the media device, the consent identifier accessible to a first instrumented application and a second instrumented application executed in a sandbox environment, the consent identifier to indicate to the first instrumented application and the second instrumented application that monitoring is allowed, access the consent identifier from the pasteboard, present media, generate monitoring information if the consent identifier permits collection of monitoring information, not generate monitoring information if the consent identifier does not permit the collection of the monitoring information, and transmit the monitoring information to the central facility.
US11736582B2

One exemplary system can determine a digital footprint for a user. The system can determine a first transmission pattern in which first content was transmitted to a first user device based at least in part on the digital footprint. The system can determine training data that includes a relationship between (i) one or more characteristics of the first content and (ii) the first transmission pattern. The system can then train a machine-learning-model using the training data to enable the machine-learning-model to predict a second transmission pattern in which to transmit second content that is different from the first content. The system can provide the second content as input to the machine-learning-model to obtain the second transmission pattern as output from the machine-learning-model. The system can cause the second content to be transmitted to the first user device in accordance with the second transmission pattern, which may conserve computing resources.
US11736579B1

Techniques are described for identifying resources within a region of a cloud-computing environment. A Resource Identification Service (RIS) may be configured to obtain a flock configuration file comprising resource discovery data associated with a service. The resource discovery data may indicate a set of parameters with which a previously existing resource of the cloud-computing environment is to be identified. RIS may execute operations to identify the previously existing resource based at least in part on matching attributes associated with previously existing resource to the set of parameters of the resource discovery data. The RIS may identify, from the flock configuration file, a set of import operations to perform to obtain an identifier corresponding to the previously existing resource. The identifier may be provided to cause the previously existing resource to be utilized in a region build.
US11736577B2

A server includes one or more processors configured to: perform bidirectional communication with the software update device using a first communication method; transmit information to the software update device using a second communication method different from the first communication method; and determine whether the one or more processors have received a specific request from the software update device using the first communication method, wherein the one or more processors are configured to provide a notification to the software update device using the second communication method when determining that the one or more processors have not received the specific request from the software update device.
US11736576B2

A method and system for generating a digital profile defined by digital behavior expressed by a device includes receiving digital behavior data and identifying information defined by a device in communication with a content server, generating a device profile for the device, associating the device with at least one device population, and generating a population profile defined by the device population. The device profiles and population profiles may be made accessible to users of a social network. Related contents, including identifying information, device behavior analysis, comparative ratings, service and diagnostic information, messages and alerts may be associated with a device profile or population profile and published to the social network. A population profile may define normal digital behavior of the population, such that the population profile may be compared with the device profile of a device, to determine whether the device operation is abnormal with respect to the population profile.
US11736573B2

A process includes establishing a peer-to-peer connection between a first client computing device and a second client computing device. The first client computing device is associated with a first participant in a coordinate grid environment provided by an application and the second client computing device is associated with a second participant in the coordinate grid environment. The process includes determining that a coordinate grid state of the first participant has experienced a state change, and in response, providing at least a portion of first participant state information associated with the state change from the first client computing device to the second client computing device via the peer-to-peer connection such that the at least the portion of the first participant state information updates previously stored first participant state information of the first participant maintained by the second participant associated with the second client computing device.
US11736567B2

Implementations of this disclosure provide data transmission operations and network interface controllers. An example method performed by a first RDMA network interface controller includes obtaining m data packets from a host memory of a first host; sending the m data packets to a second RDMA network interface controller of a second host; backing up the m data packets to a network interface controller memory integrated into the first RDMA network interface controller; determining that the second RDMA network interface controller does not receive n data packets of the m data packets; and in response, obtaining the n data packets from the m data packets that have been backed up to the network interface controller memory integrated into the first RDMA network interface controller, and retransmitting the n data packets to the second RDMA network interface controller.
US11736562B1

Provided are a method and system for achieving high availability of service under a high-load scene in a distributed system. The method includes constructing a node selection model at a master node of a distributed cluster; constructing a request selection model in each slave node; wherein the request selection model includes weights of designated requests and trade-off parameters set for requests each having a weight greater than a set value; when the distributed system enters the high-load scene, reading, by the master node, the node selection model, and sequentially selecting the served slave nodes according to a time slice round robin policy; and reading, by each slave node, the request selection model, and sequentially returning data of each request according to the trade-off parameters of each request.
US11736560B2

Providing a distributed network service includes: receiving network traffic at a first physical device; and executing a service engine to participate in the distributed network service. The distributed network service is provided to at least the first target application instance executing in a first VM on the first physical device, and a second target application instance executing in a second VM on a second physical device; and a shared state of the distributed network service is maintained with respect to the first physical device and the second physical device.
US11736554B2

Systems, methods, and computer program products for smart upload automation in which actions are automatically performed on a set of digital assets against a target item. In one embodiment, a system includes a network, a server machine, a client machine and a data storage device, each of which is coupled to the network. The client machine designates digital assets and a target item against which the assets will be uploaded. The digital assets are uploaded by the client machine to the data storage device via the network. The server machine automatically performs actions on the digital assets without intervention by the client machine, where the actions are associated with or in some way defined by the target item. The actions may include setting metadata values of the digital assets based upon metadata associated with the target item, or generating different renditions of the digital assets.
US11736551B2

The method, apparatus, and computer program product provided herein provide for distribution of customized content to displays in a network. A display may receive video content for display from a transceiver device. Channel configurations may be user-configured to include content from any number of sources. Channel content may be generated based on a channel configuration to incorporate identified content and the channel content may be provided to transceiver devices. Alert messages may be pushed to channels, and takeovers of transceiver devices to stream a particular channel may be performed.
US11736546B2

Methods and systems for intelligent use of off-peak bandwidth are disclosed. An example method can comprise receiving a request for content from a user device. The content server can transmit the content to the user device. Upon receiving a teardown command to suspend transmission of the content, after transmitting a first portion of the content to the user device, the content server can determine that playback of the content is likely to be resumed at a peak time. The content server can then pre-position a second portion of the content proximate to the user device prior to the peak time.
US11736545B2

A method of providing a user interface for a live virtual fan experience on a client device of a user is disclosed. Based on a receiving of a notification from a live event broadcasting platform, a live video feed of the user is communicated to the live event broadcasting platform. Based on a receiving of a notification from the live event broadcasting platform that the live video feed of the user has been selected for integration into a broadcasting of the live event, a notification is caused to be presented in real time in the user interface. Based on a notification from the live event broadcasting platform that the live video feed of the user has been integrated into the broadcasting of the live event, the user interface is caused to be updated in real time to reflect the integrating of the live video feed.
US11736542B2

Examples can include a system for video chat cycles within a social media application. An organizer platform can be used to design a schedule for the video chat cycles. This can include scheduled organizer content before, after, and between video chats. The organizer content can include graphics, video, and even live streams by the organizer.
US11736536B2

An information processing system includes circuitry to acquire an external system identification information identifying an external system to be linked through a touch point read with a user terminal used by a user, identify, based on registration information stored in the external system identified by the external system identification information and related to the user, attribute information indicating an attribute corresponding to a set location of the touch point through which a service corresponding to the attribute is to be provided, and transmit, to the user terminal, connection destination information indicating a connection destination of the service corresponding to the attribute.
US11736535B1

Methods, systems, and storage media for initiating communication between artificial reality devices are disclosed. Exemplary implementations may: enable a discovery setting by a first user wearing a first artificial reality device; detect a presence of at least a second user wearing a second artificial reality device; determine a familiarity level of the first user with the second user; and in response to the familiarity level breaching a familiarity threshold, initiate a call with the second artificial reality device by the first artificial reality device, the call including an interaction in an artificial reality environment accessed via the first artificial reality device and the second artificial reality device.
US11736534B2

A system is provided for establishing a shared media session for client devices that receives event data and media corresponding to a shared media session and previous shared media sessions from a recording client device communicably coupled to a distributed communication network. A persistent record of the event data and media is generated until the shared media session is terminated by at least one of a first client device or by abandonment of the distributed communication network by the first client device and by second client devices. A new disparate live media output stream is generated with multiple distinct channels based on augmentation of a disparate live media output stream in the shared media session. The augmentation is based on an interaction from a user on actions in the shared media session.
US11736527B1

A multi-enterprise system for selecting custom high-value sets of SIEM rules for individual member enterprises communicates with member enterprises via network connections. User interfaces are implemented to enable member enterprises to access the system for search, download, and other functions. Advanced rule identification using a sophisticated security knowledge graph enhances processing efficiency and effectiveness.
US11736524B2

A network traffic sending method and apparatus, and a hybrid honeypot system are provided. The method includes receiving a first attack traffic flow; determining that a request type of the first attack traffic flow is a first request type and determining maturity of a virtual honeypot model for the first request type. Upon the maturity of the virtual honeypot model for the first request type being higher than a threshold set for the first request type, the method includes forwarding the first attack traffic flow to a virtual honeypot using the model, or forwarding the first attack traffic flow to a virtual honeypot using the model and a physical honeypot. Otherwise, it includes forwarding the first attack traffic flow to a physical honeypot. Therefore, a virtual honeypot using a virtual honeypot model of relatively high maturity is used to respond to an attack traffic flow.
US11736514B2

The present disclosure provides a method and apparatus for suppressing the spread of viruses in a local area network (LAN). The method includes, in response to that an ARP packet is received, determining whether a number of interacting terminals corresponding to a target terminal that sent the ARP packet reaches a first preset threshold; in response to that the number of interacting terminals reaches the first preset threshold, further determining whether a number of abnormal terminal relationships corresponding to the target terminal reaches a second preset threshold; and in response to that the number of abnormal terminal relationships reaches the second preset threshold, providing protection to the target terminal to so to suppress virus propagation in the LAN.
US11736510B2

A domain security assurance system includes a computing platform having processing hardware and a memory storing software code. The processing hardware is configured to execute the software code to obtain domain inventory data identifying multiple domains, to predict, using the domain inventory data, which of the domains are owned by the same entity to identify commonly owned domains, and to determine, using the domain inventory data and the commonly owned domains, which of the commonly owned domains are controlled by the same administrator to identify one or more group(s) of commonly administered domains. When executed, the software code also removes, using the domain inventory data, duplicate domains included in the group(s) to identify non-duplicate domains, evaluates a susceptibility of each of the non-duplicate domains to a cyber-attack to identify one or more target domain(s) vulnerable to the cyber-attack, and identifies the target domain(s) for a security assessment.
US11736509B2

The technology disclosed relates to simulating spread of a malware in cloud applications. In particular, the technology disclosed relates to accessing sharing data for files shared between users via sync and share mechanisms of cloud applications, tracing connections between the users by traversing a directed graph constructed based on the sharing data, and simulating spread of a malware based on the traced connections to simulate user exposure to, infection by, and transmission of the malware. The connections are created as a result of syncing and sharing the files via the sync and share mechanisms. The malware is spread by syncing and sharing of infected ones of the files via the sync and share mechanisms.
US11736507B2

One embodiment of the present disclosure sets forth a technique for analyzing network vulnerabilities. The technique includes determining an address for each target device included in a plurality of target devices; for each target device, assigning a port scanning task to an associated port scanning service, the port scanning task being associated with the target device via the address of the target device; for each port scanning task, receiving a port scanning result from the port scanning service assigned to the port scanning task, the port scanning result including a list of open ports for the target device associated with the port scanning task; for each open port included in each port scanning result, assigning a vulnerability scanning task to an associated vulnerability service; receiving a vulnerability scanning result for each vulnerability scanning task; and generating a report based on the port scanning results or the vulnerability scanning results.
US11736504B2

A surveillance system connectable to a network, comprising a communication module and a management module; said system being configured to, during an initialization phase: a. intercept a first message being sent to a first device; b. intercept a second message said second message being a response from the first device to the first message; c. calculate a time interval between the interception of the first message and the second message; d. repeat the steps a. to c. to determine further time intervals; e. determine a distribution of said time intervals; f. store the distribution and during a surveillance phase, intercept a third message said message being sent to the first device; intercept a fourth message said fourth message being a response to the third message; calculate a new time interval between the interception of the third and fourth messages; and verify that the new time interval is within the distribution.
US11736503B2

Various embodiments of methods for detecting anomalous activity in a computer network are disclosed. A method includes a computer system receiving an indication of a current session establishing a secure channel to a computing device within a network. The computer system evaluates information relating to the current session, as well as information relating to one or more other sessions. Using this information, the computing system performs monitoring to detect the presence of anomalous lateral movement within the network, for example based on detecting multiple user credentials. Based on the evaluating performed, the computer system generates a score for the current session and reports whether the score is indicative of anomalous lateral movement.
US11736501B2

A method and system for analysis of a facility may include providing an emulation host system, generating a pristine circuit model on the emulation host system, inserting a first hardware trojan model, emulating operation of the golden circuit model, and emulating operation of the first hardware trojan model, and determine a set of machine-learning models, detecting the presence of an unknown trojan as a function of the set of machine learning models.
US11736497B1

A method of providing cyber security to an industrial control system is described. The method includes detecting an anomaly and recording and reporting the detected anomaly to a control system within a network associated with the industrial control system. Detecting the anomaly may include recording all unauthorized attempts to connect to a communication port in the network, capturing identifying information associated with the unauthorized attempts, detecting scanning activity of a hacker in the network, detecting an attempt to manipulate a log file to conceal malicious activity in the network; and recording and reporting the detected anomaly to a controller within the network
US11736482B2

Systems and methods are disclosed for online authentication of online attributes. One method includes receiving an authentication request from a rely party, the authentication request including identity information to be authenticated and credential information to be authenticated; determining whether a user account is associated with the received identity information by accessing an internal database; accessing user data of the user account determined to be associated with received identity information; determining authentication data to obtained from a user associated with the user account based on the user data of the user account and the credential information to be authenticated; transmitting a request for authentication data; receiving authentication data associated with the user; transmitting authentication data associated with the user; and receiving an authentication result from the verification data source server for the user associated with authentication data.
US11736480B2

An authentication system determines a risk level for a client device impersonating a client device enrolled in authentication services by comparing device metadata for the impersonating client device to device metadata for the enrolled client device. As part of enrolling the enrolled client device, the authentication system associates one or more authentication credentials with the enrolled client device. In order to authenticate access requests associated with a client device identified as the enrolled client device, the authentication system obtains an authentication token from the client device generated using the authentication credentials and also obtains device metadata corresponding to the client device. Based on the device metadata comparison during authentication, the authentication system detects device metadata anomalies and uses detected device metadata anomalies to determine a risk level for the client device. Based on the risk level, the authentication system authorizes or denies the client device from accessing requested services.
US11736474B1

A method may include receiving a data file including a plurality of tuples, each respective tuple including a username and password; matching a username from a tuple in the data file to a username of an account stored in an account database; determining that the password from the tuple matches a password for the account; in response to the determining indicating a match, setting a security flag for the account identifying the account as compromised; subsequent to the security flag being set, receiving a login request with validated credentials for the account from a computing device; and in response to the login request, transmitting a request to the computing device to modify the password for the account.
US11736473B2

Identifiers and access tokens for privacy in centralized address management. In an embodiment, address information may be associated with a unique address identifier that can be used in place of the address information. For example, a user may register an address with his or her user account using the address identifier, rather than the address information. In addition, an organization may utilize the address identifier to obtain an access token that enables communication with the user at the associated address information.
US11736472B2

Disclosed in some examples are methods, systems and machine-readable mediums which allow for more secure authentication attempts by implementing authentication systems with credentials that include interspersed noise symbols in well-distributed positions determined by the user. These systems secure against eavesdroppers such as shoulder-surfers or man-in-the middle attacks as it is difficult for an eavesdropper to separate the well-distributed noise symbols from legitimate credential symbols.
US11736471B2

A system for communicating with multiple vehicles or other electronic devices that share a common media access control (MAC) or other address is disclosed. Upon receiving a certificate signing request (CSR) from a connected device and determining that the device does not have a unique address, the system will generate a unique address for the device and embedding the unique addresses in a certificate, sign the certificate, and transfer the certificate to the device. Then, when the system communicates with the device, the system may use that unique address to identify the device.
US11736470B2

Blockchain validation systems including a blockchain configured banking core (BCBC) hosted on a server, a blockchain configured component coupled to the BCBC, permitting transfer of data records to the BCBC for storage thereon, and a number of blockchain configured federation proxies facilitating identification of access rules and execution of blockchain validation mechanisms. Methods for blockchain validation involving permitting interaction amongst a plurality of external computing systems associated with a plurality of entities in a manner bypassing a BCBC hosted on a server, through a blockchain configured component accessible by the external computing systems, permitting data record transfer to the BCBC over an independent verification network, managing the data records using blockchain configured federation proxies, and selectively distributing data records to the entities.
US11736459B2

Methods, systems, and apparatus, including a method for preventing fraud. In some aspects, a method includes: receiving, from multiple client devices, a measurement data element that includes a respective group member key and a group identifier for a given conversion as a result of displaying a digital component. Each client device uses a threshold encryption scheme to generate, based at least on network data that includes one or more of impression data or conversion data for the conversion, a group key that defines a secret for encrypting the network data and generate, based on data related to the application, the respective group member key that includes a respective share of the secret. In response to determining that at least the threshold number of measurement data elements having the same group identifier have been received, the network data is decrypted using the group member keys in the received measurement data elements.
US11736457B2

Systems and methods are provided for obtaining data to be secured based on a secret sharing technique, the data being associated with a file identifier and a split specification that includes at least a number of splits n and a minimum number of splits m required for reconstructing the data, and a Repeatable Random Sequence Generator (RRSG) RRSG scheme. An RRSG state can be initialized based at least in part on a given data transformation key to provide repeatable sequence of random bytes. For every m bytes of data: a polynomial whose coefficients are determined based at least in part on m bytes of the data and a portion of the repeatable sequence of random bytes can be determined; the polynomial can be evaluated at n unique values determined by a portion of repeatable sequence of random bytes to generate n bytes. Each byte can be stored into one of the n split stores.
US11736447B2

A method that is performed to access data nodes of a data cluster. The method includes obtaining, by a data access gateway (DAG), a first request from a host; and in response to the first request, obtaining first bidding counters from the data nodes; obtaining first metadata mappings from the data nodes; making a first determination that the first request may not be served using any data node in an accelerator pool of the data cluster; and in response to the first determination, identifying, based on the bidding counters and metadata mappings, a data node in a non-accelerator pool of the data cluster associated with a first highest bidding counter of the bidding counters and a first appropriate metadata mapping of the metadata mappings; and sending the first request to the data node in the non-accelerator pool of the data cluster.
US11736440B2

A packet-filtering network appliance such as a threat intelligence gateway (TIG) protects TCP/IP networks from Internet threats by enforcing certain policies on in-transit packets that are crossing network boundaries. The policies are composed of packet filtering rules derived from cyber threat intelligence (CTI). Logs of rule-matching packets and their associated flows are sent to cyberanalysis applications located at security operations centers (SOCs) and operated by cyberanalysts. Some cyber threats/attacks, or incidents, are composed of many different flows occurring at a very high rate, which generates a flood of logs that may overwhelm computer, storage, network, and cyberanalysis resources, thereby compromising cyber defenses. The present disclosure describes incident logging, in which a single incident log efficiently incorporates the logs of the many flows that comprise the incident, thereby potentially reducing resource consumption while improving the informational/cyberanalytical value of the incident log for cyberanalysis when compared to the component flow logs. Incident logging vs. flow logging can be automatically and adaptively switched on or off depending on the combination of resource consumption and informational/cyberanalytical value.
US11736434B2

When instantiating a requesting process that publishes a request for a response from a responding process, a method of implementing an event-based distributed messaging service includes identifying a response topic of a distributed messaging service and generating subscriptions for the response topic where each subscription includes a subscription identifier. During runtime for the requesting process, the method publishes a request message to a request topic subscribed to by the responding process where the request message includes a unique message identifier and generates a subscriber using a respective subscription identifier of a respective subscription selected from the subscriptions where the subscriber includes the unique message identifier. During runtime for the requesting process, the method also receives, at the subscriber, a filtered response message from the responding process where the filtered response message is filtered based on a subscription identifier associated with the subscriptions for the requesting process.
US11736432B2

A wireless User Equipment (UE) generate a Session Initiation Protocol (SIP) message that comprises a SIP header and a user message. The SIP header indicates a priority QoS and the user message indicates a message destination. The wireless UE wirelessly transfers the SIP message to a wireless network and the wireless network transfers the SIP message to a message network. In response to the priority QoS indicated in the SIP header, the message network generates and transfers another SIP message using the priority QoS. The other SIP message comprises another SIP header and the user message.
US11736429B2

Systems and methods including notification techniques for sharing information related to detected dialogs on secondary computing devices associated with a user are provided. For example, a system can include a user interface (UI) monitor on a first client computing device configured to detect a dialog and send an indication of the dialog to a workspace backend. The workspace backend can facilitate communication between the first client computing device and one or more secondary computing devices associated with the user such that the user receives notifications of dialogs displayed on the first client computing device on the one or more secondary computing devices. The user has the option of responding to the dialog on a secondary computing device, and the workspace backend facilitates transmission of the user response on the secondary computing device back to the first client computing device.
US11736428B2

An approach is provided that receives a message and applies a deep analytic analysis to the message. The deep analytic analysis results in a set of enriched message embedding (EME) data that is passed to a trained neural network. Based on a set of scores received from the trained neural network, a conversation is identified from a number of available conversations to which the received message belongs. The received first message is then associated with the identified conversation.
US11736427B2

Disclosed are various embodiments for integrating client applications with hosted applications. For example, an email can be received from an email client. It can then be determined whether the email is associated with a hosted application. In response to a determination that the email is associated with the hosted application, a request can be made to a connector for a calendar object. The calendar object is then received and returned to the email client.
US11736419B2

Systems and methods for incorporating intelligent virtual assistants into advertisements on social networking platforms are provided. When a user interacts with a content item, an intelligent virtual assistant is selected and put into contact with the user. The intelligent virtual assistant is provided with a context that includes information about the user in the social networking platform, information about the user in a customer relationship management platform, and information about the product, service, or entity associated with the content item. The context allows the intelligent virtual assistant to converse with the user in a way that feels natural and relevant to the user and allows the intelligent virtual assistant to answer any questions about the product, service, or entity associated with the content item.
US11736418B2

Implementations described here provide a chatbot system that is configurable to meet the needs of the user. In one implementation, a chatbot system is configured to utilize and vary decision trees, decision tree complexity, and decision tree selection adaptive to the needs of the end user. Further, implements may utilize decision trees that are configured as static or dynamic using independent leaves and skillsets to allow for variations in the level of sophistication needed for a chatbot conversation. In other implementations, a chatbot system may be configured to assess the chatbot scenario and requirements in order to adapt processing requirements in order to increase or decrease processing threads to vary processing efficiency relative to the needs of the user. In some scenarios, the chatbot system described herein is introspective thereby using feedback and data to be adaptive to chatbot session errors and self-healing.
US11736412B1

Systems, methods, and machine-readable media to orchestrate process-performing resources and process protocols particularized to individual resources and loads are provided. Data changes in the data streams may be detected and identified. Data items from the data streams may be aggregated. Protocols that include parameter constraints according to specifications of process performance and/or operation performance may be identified. Operation-performing resources may be modeled with metrics being a function of protocols and consolidated data portions. A composite may be created that specifies a configuration a subsystem. The composite may be transmitted, and allocation of operation-performing resources to perform the defined process in accordance with the selected protocols may be controlled.
US11736406B2

Systems and methods to enable grouping and routing of data packets are disclosed. Packets that together make up a data or content item may include grouping information that identifies or classifies the packets into a group. Grouping information may further contain information regarding maximum packet drop thresholds and instructions for a network device to follow if such a threshold is approached or exceeded. Network devices may receive and process the grouping information associated with packet groups and act in accordance with any given instructions. Network devices may intelligently decide to drop packets of one group to meet delivery thresholds for another group, including dropping all packets if necessary, or drop packets from several groups to meet delivery thresholds for all received groups. Network devices may notify other network devices about dropped packets and packet groups.
US11736404B2

A real-time streaming service predicts an incoming flash crowd event and manages computing resources to respond to the event before traffic peaks, thus reducing the likelihood that the streaming service's resources will be overwhelmed. Embodiments of a real-time streaming server predict a flash crowd event by detecting actions by client devices during a multi-step process to access a real-time content stream from an endpoint server cluster. Initially, the endpoint server has first computing resources configured to stream the content stream to the client devices. The streaming server provisions second computing resources at the endpoint server based on a rate at which the client devices perform an action associated with a first step in the multi-step process. The second computing resources are configured to stream the real-time content stream based on a rate at which the client devices perform an action associated with a second step in the multi-step process.
US11736400B2

A method for network traffic forwarding using multi-virtual routing and forwarding instances forwarding lookups is provided. The method includes: receiving network traffic on an interface of a network device associated with a first virtual routing and forwarding instance (VRF) fallback policy specifying a first set of rules; making a first determination that the network traffic includes network traffic information matching the first set of rules; initiating execution of VRF lookups in a plurality of VRFs programmed in the network device to obtain a set of VRF lookup results; making a second determination, using the set of VRF lookup results and the first VRF fallback policy, that the network traffic is to be forwarded using a first VRF among the plurality of VRFs; and initiating, based on the second determination, forwarding of the network traffic using the first VRF.
US11736397B2

The present disclosure provides a packet tracing mechanism will be described that provides packet tracing information to a mobile network controller. In one aspect, a method includes receiving a data packet sent from a source node to a destination node; determining if the data packet is to be updated with packet tracing information; and upon determining that the data packet is to be updated, updating the packet tracing information of the data packet to include identification of the network device and an ingress timestamp of the data packet at the network device for a corresponding network controller to determining network routing policies.
US11736383B2

Some embodiments provide a method for a computing device that implements a first logical network gateway in a first datacenter to process data messages between data compute nodes (DCNs) belonging to the logical network and operating in the first datacenter and DCNs belonging to the logical network and operating in a second datacenter. From a host computer in the first datacenter, the method receives a logical network data message encapsulated with a first tunnel header including a first virtual network identifier corresponding to a logical forwarding element of the logical network. The method removes the first tunnel header and encapsulates the logical network data message with a second tunnel header include a second virtual network identifier corresponding to the logical forwarding element. The method transmits the logical network data message encapsulated with the second tunnel header to a second logical network gateway in the second datacenter.
US11736379B2

In some implementations, a system can be used to selectively transmit bandwidth-intensive data over a cellular network based on dynamically determining resource availability over the cellular network. Monitoring system data to be transmitted to a remote server can initially be obtained by a component of a monitoring system. One or more network performance tests may be performed on a carrier network associated with the monitoring system. One or more network performance parameters can be computed based on results of the one or more network performance tests. The one or more network performance parameters can then be evaluated in relation to transmission requirements associated with the monitoring system data. A particular transmission strategy to use in transmitting the monitoring system data to the remote server can then be selected from among multiple transmission strategies. The monitoring system data is then transmitted to the server in accordance with the particular transmission strategy.
US11736373B2

Systems, methods, and related technologies for generating a network traffic map based on network traffic information and additional data are described. Network traffic information may be obtained from endpoints using an operating system (OS) interface, without an agent being installed on the endpoints. A network traffic map may be generated for the network based on the network traffic information.
US11736367B2

A method of generating a network topology map in a datacenter comprising a network manager server and a set of host machines is provided. Each host machine hosts a set of data compute nodes (DCNs). The method receives information regarding the configuration of each of a set of logical networks from the network manager server. Each logical network is connected to several DCNs. The method identifies logical connections configured between the DCNs using the configuration of the overlay networks. The method generates a network topology map based on the identified logical configuration. The network topology identifies the DCNs that are connected to each overlay network. The method displays the network topology map on a graphical user interface.
US11736365B2

Systems and methods are disclosed for providing visual network programming for network management automation. One exemplary method may include providing a GUI for automating network management tasks and receiving a plurality of graphical icons. Each graphical icon may be associated with one or more operations or functions. The method may also include associating the plurality of graphical icons with a device table for defining a device queue by storing information of at least one network device in the computer network and a device data table for storing information to be retrieved from the at least one network device defined in the device queue. The method may also include generating a network application based on the plurality of graphical icons and associated device table and device data table.
US11736364B2

In one embodiment, a device classification service uses feature vectors that represent how frequently one or more traffic features were observed in a network during different time windows to train a cascade of machine learning classifiers to label one or more devices in the network with a device type. The service receives traffic features of traffic associated with a particular device in the network, and then uses the cascade of machine learning classifiers to assign a device type label to the particular device based on the traffic features of the traffic associated with the particular device. The service initiates enforcement of a network policy regarding the device based on its device type based on the device type label assigned to the particular device.
US11736361B1

Techniques are disclosed for generating device cluster capability information for a cluster of devices in a network environment. Capability information can specify capabilities of the devices in the cluster. A first user device can generate device capabilities for the first user device and obtain device capabilities for other devices in the cluster. The first user device can generate cluster capability information providing an intersection of the first set of device capabilities and device capabilities of the other user devices in the cluster. The first user device can obtain cluster capability information for other clusters in the network environment and receive a request from a service user device to perform a specific task. The first user device can transmit cluster capability information relating to a selected cluster that corresponds with the request.
US11736360B2

The present invention relates to a communication system comprising a plurality of processors and at least one switch, referred to as a main switch, connecting the processors into a main communication network; the system being characterised in that it further comprises at least one other switch, called an auxiliary switch, connecting the processors in an auxiliary communication network, and in that the auxiliary communication network is intended to be used by the processors to initialise the main communication network.
US11736357B2

An example system includes a mobile system having at least one network zone; a policy manager circuit structured to interpret a policy comprising an external data quantity description; a configuration circuit structured to configure a gatekeeper interface circuit in response to the external data quantity description; and the gatekeeper interface circuit interposed between the at least one network zone and a transceiver selectively couplable to an external device, and further structured regulate communications between end points of the at least one network zone and the transceiver.
US11736348B2

A service manager for managing services made available to front end devices operably connected to backend devices via managed network devices includes a storage device for storing a services network use information repository that associates the services with network functions enabled by the managed network devices and a processor. The processor makes an identification of a front end device of the front end devices that will provide virtualized desktop infrastructure services, using at least one of the backend devices, to a user; in response to the identification: identifies a set of the services to be provided to the user; identifies: at least one of the managed network devices that provides network connectivity to the front end device, and network use information for the set of services using the services network use information repository; and configures the at least one managed network device based on the network use information.
US11736347B2

A provisioning control apparatus couples to a provisioning equipment server electrically connectable with an electronic device(s) for provisioning the electronic device(s) with a program code. The provisioning control apparatus has a communication interface which transmits the program code to the provisioning equipment server for provisioning the electronic device(s) with the program code and to receive an electronic provisioning token having provisioning control data. The provisioning control apparatus includes a processor that controls the transmission of the program code via the communication interface to the provisioning equipment server. The electronic provisioning token has time adjustment information for adjusting the clock, and the processor adjusts the time of the clock. A provisioning control system includes the provisioning control apparatus and a method involves provisioning the electronic device(s).
US11736344B2

Examples described herein relate to systems and methods for containing a faulty stimulus. A computer-implemented method may include listing in a suspect list every received stimulus including the faulty stimulus, and implicitly testing the stimuli by respectively acting upon those stimuli by a software application. Responsive to successfully acting upon each of the stimuli besides the faulty stimulus, each non-faulty stimulus is deleted from the suspect list and, responsive to such deletion, made available to a downstream node. Responsive to acting upon the faulty stimulus, the software application crashes which leaves the faulty stimulus listed in the suspect list. The software application then restarts and deems the faulty stimulus as being faulty based upon the faulty stimulus still being listed in the suspect list after the restart.
US11736338B2

A network management apparatus according to an embodiment includes: a storage unit configured to store information indicating a correspondence relationship between information objects related to a physical layer and information objects related to a logical layer in a network configuration, an acquisition unit configured to acquire a first information object related to a location where a failure occurs in the physical layer of the network configuration from the storage unit, an identification unit configured to identify, as a failure influence range, a second information object associated with the first information object related to the location where the failure occurs, of the information objects related to the logical layer stored in the storage unit, the first information object being acquired by the acquisition unit, and an outputting unit configured to output information indicating the failure influence range identified by the identification unit.
US11736336B2

A computer-implemented method, system and computer program product for performing real-time monitoring of machine learning models. Real-time model state data and metadata (e.g., operating dataset) of the machine learning models located within an orchestration plane of a network are collected by agents located within the machine learning models. The portion of the collected real-time model state data and metadata that is to be provided to the user by the service orchestrator (configured to monitor the machine learning models in the service orchestration plane via the use of agents in the machine learning models) is selected and marked. The marked collected real-time model state data and metadata are then provided to the user by the service orchestrator. In this manner, real-time monitoring of the machine learning models in the orchestration plane, such as the service orchestration plane, of a broadband cellular network (e.g., fifth generation broadband cellular network) is achieved.
US11736335B2

Various embodiments of the present disclosure relate to transmitter systems, methods, and instructions for signal predistortion. The transmitter system includes a signal decomposition module configured to extract a low-frequency signal (Slo) and a high-frequency signal (Shi) from an input signal (Sin); a distortion compensation processing module configured to generate a pre-distorted low-frequency signal (Ulo) and a pre-distorted high-frequency signal (Uhi) based on the received low-frequency and high-frequency signals using signal generation coefficients; a signal combining module configured to combine the pre-distorted low-frequency signal (Ulo) and the pre-distorted high-frequency signal (Uhi); and a signal characteristic estimation processing module configured to update the signal generation coefficients used by the distortion compensation processing module based on comparing the low-frequency signal (Slo) and the high-frequency signal (Shi) with a detected feedback low-frequency signal (Ylo) and a detected feedback high-frequency signal (Yhi).
US11736321B2

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may perform online spur detection and mitigation scheme. The UE may identify spurs during operation, in real time, and apply cancelation and noise equalization to address identified spurs. The UE may apply a high pass filter to reference signals. During a symbol, the UE may apply the high pass filter by estimating the channel on one or more neighbor tones (e.g., tones of higher frequency and tones of lower frequency that also carry reference symbols). Because the UE may assume that a channel will generally be smooth, and that noise may vary slowly or steadily across frequency resources, the UE may compare the channel noise of a particular tone to an average or normalized channel noise of the one or more neighbor tones.
US11736309B2

A meeting application server and a method for real-time content of interest detection and notification for a meeting are described herein. The meeting application server includes a processor and a computer-readable storage medium operatively coupled to the processor. The computer-readable storage medium includes computer-executable instructions that cause the processor to receive, via a remote computing system, content of interest data for a meeting. The computer-executable instructions also cause the processor to analyze the content of interest data to determine a theme of interest for the meeting, train a classification model for the theme of interest, and generate real-time meeting data for the meeting. The computer-executable instructions further cause the processor to determine the probability that the real-time meeting data relate to the theme of interest using the classification model and, if the probability exceeds a threshold value, transmit a content of interest alert to the remote computing system.
US11736304B2

An authentication server may use secure messaging with a remote device prior to authorizing non-secure communications between the remote device and a content server, thereby preventing unauthorized access to the content server. The secure messaging uses such security features as encryption, signatures with authentication certificates, a realm, and/or a nonce. Once non-secure communication is authorized, the remote device may act as a proxy between the content server and a user device connected to the remote device. The authentication server sends timeout notices to the remote device containing an interval and a key. To continue non-secure communications with the content server, the remote device must respond prior to the expiration of the interval by sending a keep-alive message containing the key to the authentication server.
US11736300B2

Software for producing and verifying computational determinations using a distributed ledger, by: (i) receiving an indication of a first artificial intelligence (AI) inferencing event, the first AI inferencing event including a first AI inferencing result produced by a first machine learning model based, at least in part, on a first input from a user; (ii) computing a hash of the first machine learning model using a cryptographic hash function; (iii) sending a record of the first AI inferencing event to a verification system, the record of the first AI inferencing event including the hash of the first machine learning model; and (iv) receiving a verification from the verification system indicating that the hash of the first machine learning model matches a hash of a second machine learning model and that the record of the first AI inferencing event has been stored in a first distributed ledger.
US11736298B2

Methods, systems, and apparatus for authenticating and authorizing users using quantum key distribution through segmented quantum computing environments. In one aspect, a method includes receiving a first and second plaintext data input from a first party and from a second party, respectively; applying a quantum computation translation operation to the first and second plaintext data inputs to generate a corresponding first sequence of quantum computations and a second sequence of quantum computations; implementing the first and second sequence of quantum computations in a first and second segmented quantum computing environment, respectively, to obtain a first and second sequence of measurement results; generating a first and second encryption key using the first and second sequence of measurement results, respectively, and an encrypted authorization token using the second encryption key; and sending the first encryption key to the first party, and the encrypted authorization token to the second party.
US11736297B2

Systems, methods, and computer-readable storage media for ensuring electronic communications have not been intercepted and manipulated. An exemplary device generates a public/private pair of keys, and transmits the public key to another device with information about the data to be shared. The second device encrypts associated data, while also executing a hash function on at least a portion of the data. The first device receives the encrypted data, decrypts it, and verifies its accuracy using a third party. The third party also executes the hash function on the data received from the first device, and transmits the output of that hash function to the first device. Both the first device and second devices and display the hash values, allowing users to visually determine if the data has been manipulated during the transaction.
US11736296B2

A method for performing biometric authentication is disclosed. In one example, the method includes obtaining first and second biometric templates and comparing them to determine if they match. The method also includes determining if a biometric certification token is valid. A computing device or other device may communicate with a verification system to determine the validity of the biometric certification token.
US11736292B2

Embodiments of this application relate to an access token management method. The method includes: obtaining, by a server, an access token and login information of an authorized account corresponding to the access token in a terminal, where the access token is a credential used for accessing a protected resource in the server, and the authorized account is an account that logs in to a resource authorization application on the terminal when the resource authorization application authorizes the access token; and when the login information indicates that the authorized account is in a non-login state, performing, by the server, invalidation processing on the access token.
US11736290B1

The disclosed technology teaches a method for managing user access to one of a set of decentralized networked nodes that share a private permissioned blockchain data structure or a decentralized personal ledger, to which access has been limited to users authorized by one of the set of decentralized networked nodes.
US11736289B2

A method including determining an assigned key pair associated with a device, the assigned key pair including an assigned public key and an associated assigned private key; determining an access key pair associated with content to be encrypted, the access key pair including an access public key and an associated access private key; encrypting the access private key using a combination encryption key determined based at least in part on the access private key and the assigned public key; encrypting a randomly generated key by utilizing the access public key; and encrypting the content utilizing the randomly generated key. Various other aspects are contemplated.
US11736286B2

A method and a secure boot control circuit for controlling a secure boot of an electronic device. The method is applicable to the secure boot control circuit, and the electronic device includes the secure boot control circuit. The method includes: checking randomness of an output of an entropy source of the secure boot control circuit to generate a check result; utilizing the entropy source to provide a random number sequence; generating a reference code according to the random number sequence; comparing the reference code with an activation code stored in the secure boot control circuit to generate a comparison result; and determining whether to enable at least one function of the electronic device according to at least one of the check result and the comparison result.
US11736285B2

A method for controlling device activation and an associated electronic device are provided. The method includes: utilizing a static entropy source of the electronic device to provide a static entropy; utilizing a first message authentication code (MAC) operator of the electronic device to execute a predetermined algorithm for generating a reference code according to the static entropy and an embedded key of the electronic device; receiving an activation code from outside of the electronic device; utilizing a comparing circuit to compare the activation code with the reference code for generating a comparison result; and determining whether to activate at least one functional circuit of the electronic device according to the comparison result.
US11736280B2

A quantum entity authentication apparatus and method. The quantum entity authentication apparatus includes a quantum state preparation unit for preparing an authentication quantum state that is generated based on an authentication key previously shared with an entity, a quantum channel verification unit for transmitting a quantum state, generated by performing an operation using a prestored unique operator on the authentication quantum state, to a quantum measurement device, and for verifying security of a quantum channel by using a result of Bell measurement and the authentication quantum state, the result of Bell measurement being revealed by the quantum measurement device for the quantum state, and a quantum entity authentication unit for, when the security of the quantum channel is verified, authenticating the entity using the result of the Bell measurement and the unique operator.
US11736278B1

The present disclosure provides computing systems in which respective quorums of computing nodes securely manage respective secrets associated with cryptographic ledgers according to threshold secret sharing schemes. In particular, membership in the quorums can be changed dynamically and unpredictability to improve security of the quorums against adversarial attacks in which adversaries attempt to compromise or gain control of the computing nodes. More specifically, by changing membership in the quorum dynamically and unpredictability, the ability of the adversary to control at any given time a threshold number of the current members of the quorum and gain access to the secret is dramatically reduced.
US11736273B2

Embodiments described herein relate to credential wrapping for secure transfer of electronic SIMs (eSIMs) between wireless devices. Transfer of an eSIM from a source device to a target device includes re-encryption of sensitive eSIM data, e.g., eSIM encryption keys, financial transaction credentials, transit authority credentials, and the like, using new encryption keys that include ephemeral elements applicable to a single, particular transfer session between the source device and the target device. The sensitive eSIM data encrypted with a symmetric key (Ks) is re-wrapped with a new header that includes a version of Ks encrypted with a new key encryption key (KEK) and information to derive KEK by the target device. The re-encrypted sensitive SIM data is formatted with additional eSIM data into a new bound profile package (BPP) to transfer the eSIM from the source device to the target device.
US11736265B2

Methods and systems are described for measuring a vertical opening of a signal eye of a pulse amplitude modulated (PAM) signal received over a channel to determine a vertically-centered voltage decision threshold of a sampler receiving a sampling clock, determining channel-characteristic parameters indicative of a frequency response of the channel, determining a correctional vernier value from the channel-characteristic parameters, and generating a horizontally-centered voltage decision threshold that introduces a horizontal sampling offset in the sampling clock in a direction closer to a horizontal center of the signal eye by combining the vertically-centered voltage decision threshold and the correctional vernier value.
US11736261B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first user equipment (UE) may transmit, to a second UE via a sidelink sub-channel of a licensed carrier, an indication of multiple data channels of an unlicensed carrier to be used to attempt one or more sidelink communications between the first UE and the second UE. The UE may attempt the one or more sidelink communications between the first UE and the second UE using the multiple data channels. Numerous other aspects are provided.
US11736259B2

A wireless transmit receive unit (WTRU) may be configured to transmit uplink control information such as Hybrid Automatic Retransmission Request (HARQ) Acknowledgement or Negative Acknowledgement (ACK/NACK) using a sequence. The HARQ ACK/NACK may comprise one bit or two bits of information, and the WTRU may use a cyclic shift of the sequence to transmit the HARQ ACK/NACK. The WTRU may use different cyclic shifts of the sequence to transmit different HARQ ACK/NACK values and the cyclic shifts may be separated from each other in a manner to facilitate the transmissions. The WTRU may be further configured to receive, from a physical downlink control channel (PDCCH), an indication of a resource block for transmitting the HARQ ACK/NACK.
US11736251B2

Methods, systems, and devices for wireless communications are described. The described techniques relate to improved methods, systems, devices, and apparatuses that support aperiodic and cross component carrier PRSs. Generally, the described techniques provide for receiving a dynamic trigger indicating that a UE is to monitor for one or more downlink positioning reference signals (PRSs). The UE may generate a timing measurement for the one or more downlink PRSs, and may transmit a measurement report that indicates the timing measurement to a transmission/reception point. A UE may also transmit a capability indicator, indicating that the UE is capable of maintaining phase coherence for a PRS that spans multiple component carriers, receive control signaling that indicates multiple component carries on which the PRS is phase coherent, generate a timing measurement for the PRS based on the control signaling, and transmit a measurement report that indicates the timing measurement to the transmission/reception point.
US11736242B2

A communications device includes receiver circuitry, transmitter circuitry, and controller circuitry controlling the transmitter circuitry and the receiver circuitry to receive data in accordance with an automatic repeat request (ARQ) type protocol in which the data is received as a plurality of encoded data packets encoded with an error correction code and the transmitter circuitry transmits a feedback signal depending on whether each of the data encoded packets is estimated as having been decoded successfully by the receiver circuitry. The controller circuitry is configured to evaluate a quality measure of each encoded data packet and in response to the evaluated quality measure to transmit an early indication of the feedback signal to the wireless communications network, before the encoded data packet has been decoded by the error correction decoder.
US11736240B2

Systems and methods are described for streaming content to multiple devices from a shared sliding window buffer in kernel space, thereby reducing memory resource use and minimizing context/mode switching between kernel space and user space. For example, concurrent streaming sessions may be seen, e.g., as a live multimedia stream. If a live video is being transmitted as a multicast stream to many devices, rather than each device having a corresponding sliding window buffer in kernel space, each device will share a shared sliding buffer in kernel space. The sliding window buffer size will be at least large enough to stream the slowest connection speed and can be, e.g., multiple times as large as necessary, in case of the issues beyond the worst-case scenario. The system then transmits chunks of the content from the shared sliding window buffer to each of the plurality of client devices.
US11736230B1

A method and system for performing a duty cycle correction and quadrature error correction for a quarter-rate architecture TX/RX communication system, including correcting a duty cycle error between a first clock signal and a second clock signal, and correcting a quadrature error between a third clock signal and a fourth clock signal.
US11736224B2

This application provides a data transmission method. The method includes: An electronic device first establishes an MPTCP connection to an application server, where the MPTCP connection includes two TCP connections. Then, the electronic device receives indication information from an application server, where the indication information includes a type identifier and a parameter. When the type identifier indicates a low data transmission delay requirement, the electronic device receives, in a first time period after the electronic device receives the indication information, the data stream by using a first TCP connection. When an accumulated data amount actually received by the electronic device in the first time period is less than a product of the parameter and duration corresponding to the first time period, the electronic device receives the data stream in a second time period by using both the two TCP connections.
US11736221B2

Aspects presented herein may enable a transmitter or a receiver to determine a size of a TB that spans more than one slot. In one aspect, a transmitter determines a multiple slot overhead parameter size for a TB of a shared channel based on an allocation of multiple slots. The transmitter calculates a number of REs allocated for the TB of the shared channel based on a number of subcarriers in a PRB, a number of scheduled symbols in a slot, a number of REs for DMRS per PRB, the multiple slot overhead parameter size, and a number of allocated PRBs. The transmitter transmits the TB of the shared channel using the calculated number of REs.
US11736217B2

On-demand allocation of communication capacity in a Mobile ad hoc Network (MANET) involves initiating in a first node of the MANET, a request for network communication capacity. The request is initiated by wirelessly transmitting an access request in a first epoch, during an access request time slot of a TDMA waveform. The access request is directed to one-hop neighbor nodes with which the first node can communicate directly. The first node determines whether the access request has been granted based on one or more responses received from the one-hop neighbor nodes. These responses include an indication by each of the one-hop neighbor nodes regarding their availability to accommodate the access request. The first node subsequently uses network communication capacity granted to it for communicating data.
US11736210B2

Methods and apparatuses for channel state information (CSI) feedback in a wireless network. In one embodiment, a method includes receiving signaling including a first Non-Zero Power (NZP) CSI-reference signal (RS) configuration for channel measurement; a second NZP CSI-RS configuration; and a CSI interference measurement (CSI-IM) configuration for interference measurement. The method includes receiving a CSI feedback request and estimating the CSI based on at least the signaled first NZP CSI-RS configuration, the second NZP CSI-RS configuration, and the CSI-IM configuration.
US11736205B2

An asymmetric bidirectional optical wireless communication system based on orbital angular momentum comprises a system end device and a client end device. The system can split light into P-polarization beam and S-polarization beam, and utilize the orbital angular momentum multiplexing technology to increase the system capacity for uplink transmission in the client end device. In addition, the system also uses the combination of a beam homogenizer and a spatial light modulator to design an orbital angular momentum multiplexer with low energy loss, which can increase the number of orbital angular momentum channels by increasing the effective area of the components.
US11736202B2

There are provided an evaluation method and an evaluation device for an optical receiver capable of evaluating only a phase error between optical 90-degree hybrids with high accuracy even when there is a skew between channels in the optical receiver. In the evaluation method and the evaluation device for the optical receiver including optical 90-degree hybrids, a phase error between the optical 90-degree hybrids is calculated by calculation of decomposing a transfer function of the optical receiver into a product of matrixes to evaluate the optical receiver.
US11736195B2

A universal sub slot module includes a Printed Circuit Board (PCB) including circuitry for power, a data plane, and a control plane; a faceplate connected to one end of the PCB and connectors connected to another end of the PCB, wherein the connectors are configured to connect to corresponding connectors in a host module; and a form factor containing the PCB and configured to interface a sub slot in the host module configured to operate in a chassis-based or rack mounted unit network element. The host module can include a plurality of sub slots, each being a port having one of the universal sub slot module and a filler module. The data plane can be configured to implement one of Optical Transport Network (OTN), Beyond 100G, Flexible Optical (FlexO), Ethernet, and Flexible Ethernet (FlexE).
US11736183B2

A repeater is provided. The repeater includes: a hybrid butler matrix configured to perform beamforming of a MIMO antenna for transmitting and receiving a base station signal; a hybrid butler matrix configured to perform beamforming of a MIMO antenna for transmitting and receiving a user terminal signal; and a signal processor configured to amplify a signal to be transmitted and received through the hybrid butler matrix. Accordingly, it is easy to manufacture a repeater, heat emission and power consumption can be reduced, and a cost of production can be reduced.
US11736181B2

The present disclosure relates to a pre-5th generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th generation (4G) communication system such as long term evolution (LTE). Disclosed is a method of identifying non-Line of Sight, NLOS, links between entities in a telecommunication network, comprising the steps of: determining if the link is NLOS and signaling from a first entity to a second entity a result of the determination by means of a parameter indicative of NLOS.
US11736166B2

A device may cause a change for a plurality of remote electrical tilt components associated with a plurality of antennas of a base station. The device may receive a set of return loss values associated with the plurality of antennas and generate a plurality of sets of return loss values. The device may calculate statistical measures for return loss values of the plurality of sets of return loss values. The device may identify port identifiers for ports associated with the plurality of antennas based on comparing the statistical measures with a threshold. The device may generate a mapping of remote electrical tilt identifiers associated with the plurality of remote electrical tilt components and the port identifiers based on identifying the port identifiers. The device may cause the mapping to be implemented by the plurality of remote electrical tilt components and the ports associated with the plurality of antennas.
US11736162B2

Disclosed are a method for transmitting and receiving channel state information in wireless communication system and an apparatus therefor. Specifically, a method for transmitting, by a user equipment (UE), Channel State Information (CSI) in a wireless communication system may include: receiving, from a base station, a channel state information reference signal (CSI-RS) through multiple antenna ports; and reporting, to the base station, CSI, in which the CSI may include selection information indicating a plurality of codewords used for generating a precoding matrix in a codebook for reporting the CSI, and a power coefficient, a phase offset, and a phase shift value applied to each of the plurality of codewords in terms of a configured bandwidth, and the precoding matrix may be generated in units of subbands within the configured bandwidth based on a linear combination of the power coefficient, the phase offset, and the phase change value.
US11736160B2

Provided are M signal processors that respectively generate modulated signals for M reception apparatuses (where M is an integer equal to 2 or greater), a multiplexing signal processor, and N antenna sections (where N is an integer equal to 1 or greater). When transmitting multiple streams, each of the M signal processors generates two mapped signals, generates first and second precoded signals by precoding the two mapped signals, periodically changes the phase of signal points in the IQ plane with respect to the second precoded signal, outputs the phase-changed signal, and outputs the first precoded signal and the phase-changed second precoded signal as two modulated signals. When transmitting a single stream, each of the M signal processor outputs a single modulated signal. The multiplexing signal processor multiplexes the modulated signals output from the M signal processors, and generates N multiplexed signals. The N antenna sections respectively transmit the N multiplexed signals.
US11736158B2

An AP/PCP may perform user selection/pairing/grouping based on a measurement of an analog transmission (e.g., signal to noise ratio (SNR) or signal to interference plus noise ratio (SINR)). The SNRs may be used, for example by the station, to determine best beams and/or beam pairs and/or worst beams and/or beam pairs. A station may feed back the best few beams and/or beam pairs for a Tx and Rx virtual antenna pair. A station may feed back the worst few beams for the Tx and Rx virtual antenna pair. The AP/PCP may receive the indication(s) and/or use the indication(s) to group the stations.
US11736133B2

Radio frequency (RF) communication systems with coexistence management are provided herein. In certain embodiments, a method of coexistence management includes generating an RF observation signal based on observing a cellular transmit signal using a cellular front end system, processing the RF observation signal to generate digital observation data using a cellular transceiver, generating a digital wireless local area network receive signal based on processing an RF wireless local area network receive signal using a wireless local area network transceiver, processing the digital observation data to determine an estimated amount of aggressor spectral regrowth present in the RF wireless local area network receive signal using a spectral regrowth modeling circuit of the wireless local area network transceiver, and compensating the digital baseband wireless local area network receive signal for RF signal leakage based on the estimated amount of aggressor spectral regrowth.
US11736125B2

An accelerated erasure coding system includes a processing core for executing computer instructions and accessing data from a main memory, and a non-volatile storage medium for storing the computer instructions. The processing core, storage medium, and computer instructions are configured to implement an erasure coding system, which includes: a data matrix for holding original data in the main memory; a check matrix for holding check data in the main memory; an encoding matrix for holding first factors in the main memory, the first factors being for encoding the original data into the check data; and a thread for executing on the processing core. The thread includes: a parallel multiplier for concurrently multiplying multiple entries of the data matrix by a single entry of the encoding matrix; and a first sequencer for ordering operations through the data matrix and the encoding matrix using the parallel multiplier to generate the check data.
US11736119B2

A data processing platform, method, and program product perform compression and decompression of a set of data items. Suffix data and a prefix are selected for each respective data item in the set of data items based on data content of the respective data item. The set of data items is sorted based on the prefixes. The prefixes are encoded by querying multiple encoding tables to create a code word containing compressed information representing values of all prefixes for the set of data items. The code word and suffix data for each of the data items are stored in memory. The code word is decompressed to recover the prefixes. The recovered prefixes are paired with their respective suffix data.
US11736110B2

A time-to-digital converter (TDC) provided according to an aspect of the present disclosure identifies existence of jitter in either one of two periodic signals received as inputs. In an embodiment, jitter is detected by examining a first sequence of counts and a second sequence of counts respectively for a first periodic signal and a second periodic signal received as input signals, with the first sequence of counts representing respective time instances on a time scale at which a first sequence of edges with a first direction of the first periodic signal occur, and the second sequence of counts representing respective time instances on the time scale at which a second sequence of edges with the first direction of the second periodic signal occur.
US11736108B2

A method for performing divided-clock phase synchronization in a multi-divided-clock system, an associated synchronization control circuit, an associated synchronization control sub-circuit and an associated electronic device are provided. The method may include: performing frequency division operations according to a source clock to generate a first divided clock and a second divided clock; performing phase relationship detection on the first divided clock according to the second divided clock to generate a phase relationship detection result signal; performing a logic operation on a first phase selection result output signal and the phase relationship detection result signal to generate a second phase selection result output signal; and outputting one of the second divided clock and an inverted signal of the second divided clock according to the second phase selection result output signal, for further use in a physical layer circuit.
US11736104B2

A switch system includes a bidirectional switch, a first gate driver circuit, a second gate driver circuit, a control unit, a first decision unit, and a second decision unit. The bidirectional switch includes a first source, a second source, a first gate, and a second gate. The first decision unit determines, based on a voltage at the first gate and a first threshold voltage, a state of the first gate in a first period in which a signal to turn OFF the first gate is output from the control unit to the first gate driver circuit. The second decision unit determines, based on a voltage at the second gate and a second threshold voltage, a state of the second gate in a second period in which a signal to turn OFF the second gate is output from the control unit to the second gate driver circuit.
US11736103B2

A system is described. The system includes a control transistor, a voltage source, a feedback node connected between a drain of the control transistor and the voltage source, a plurality of resistors connected between the voltage source and ground, and a control node connected to a gate of the control transistor. The resistors include a first series-connected set of resistors associated with the control transistor being biased and a second series-connected set of resistors associated with the control transistor being unbiased. During a startup period, the control node is configured to bias the control transistor to select the first series-connected set of resistors, thereby increasing a voltage level of the voltage source to a boosted VCC voltage. After the startup period, the control node is configured to unbias the control transistor to select the second series-connected set of resistors, thereby decreasing the boosted VCC voltage to a normal VCC voltage.
US11736101B2

A circuit for controlling electrical power is described herein. In accordance with one embodiment, the circuit comprises: a circuit node operably connected to a pass element configured to be switched on and off in accordance with a drive signal applied at the circuit node; a communication interface configured to receive data from an external controller operably connected to the communication interface; and a control circuit configured to generate, in a first mode of operation, the drive signal dependent on parameters of a first parameter set and based on data received via the communication interface, and to generate, in a second mode of operation, the drive signal dependent on parameters of a second parameter set while discarding data received via the communication interface.
US11736096B2

A system comprises an electromagnetic pulse generation system that comprises a first pulse generation circuit, a second pulse generation circuit, and a mixing circuit. The electromagnetic pulse generation system is operable to output a first pulse generated by the first pulse generation circuit onto a first signal path, output a second pulse generated by the second pulse generation circuit onto the first signal path, generate a third pulse by mixing, via the mixing circuit, a fourth pulse generated by the first pulse generation circuit and a fifth pulse generated by the second pulse generation circuit, and output the third pulse on the first signal path.
US11736087B2

A microelectromechanical resonator assembly includes a first rectangular resonator array and a second rectangular resonator array, where the first rectangular resonator array and the second rectangular resonator array each have at least two rectangular resonator sub-elements, and the at least two rectangular resonator sub-elements are coupled to each other by one or more connection elements, and the first rectangular resonator array and the second rectangular resonator array are coupled to each other by one or more connection elements.
US11736082B2

According to one embodiment, a clipping state detecting circuit includes: a zero-cross detection circuit that detects a zero-cross point of an input signal; an output circuit that converts the input signal into a PWM signal; a clip detection circuit that detects a state in which an output of the output circuit is clipped; and a control circuit that determines a state is a clipping state when a clip time of the output of the output circuit satisfies a condition of a threshold value set in advance with respect to a non-clip time.
US11736081B2

In some embodiments, a method for performing enhancement on an audio signal to generate an enhanced audio signal in response to feedback indicative of amount of compression applied to at least one frequency band of the enhanced audio signal. In typical embodiments, the enhancement is or includes bass enhancement. Examples of other types of enhancement performed in other embodiments include dialog enhancement, upmixing, frequency shifting, harmonic injection or transposition, subharmonic injection, virtualization, and equalization. Other aspects are systems (e.g., programmed processors) and devices (e.g., devices having physically-limited bass reproduction capabilities, such as, for example, a notebook, tablet, mobile phone, or other device with small speakers) configured to perform any embodiment of the method.
US11736077B2

A radio-frequency module includes a first power amplifier, a second power amplifier, a switch, a plurality of first filters, and a second filter. The first power amplifier amplifies a transmission signal of a first frequency band and outputs the amplified transmission signal. The second power amplifier amplifies a transmission signal of a second frequency band and outputs the amplified transmission signal. The pass bands of the plurality of first filters are contained within the first frequency band. The pass band of the second filter is contained within the second frequency band. The second power amplifier has a greater output power level than the first power amplifier. The first output terminal of the first power amplifier is switchably connectable to the plurality of first filters via the switch. The second output terminal of the second power amplifier is connected to the second filter without the switch interposed therebetween.
US11736076B2

An average power tracking (APT) power management circuit is provided. The APT power management circuit is configured to generate a first APT voltage(s) for a first power amplifier(s) and a second APT voltage(s) for a second power amplifier(s). The APT power management circuit further includes a pair of switcher circuits that can generate a pair of reference voltages. Depending on various operating scenarios of the APT power management circuit, it is possible to selectively output any of the reference voltages as any one or more of the first APT voltage(s) and the second APT voltage(s). As such, it is possible to flexibly configure the APT power management circuit to support the various operating scenarios based on a minimum possible number of the switcher circuits, thus helping to reduce footprint and cost of the APT power management circuit.
US11736073B2

An amplifier circuit has an output stage, a first current source, a second current source, a third current source, a fourth current source, and a voltage clamping voltage. The output stage has a first P-type transistor and a first N-type transistor. The voltage clamping circuit receives a first bias voltage and a second bias voltage, and has a first end and a second end. When a second input current is positive current and the input current is a negative current or a zero current, the first end provides a first clamping voltage greater than the first bias voltage to a gate of the first P-type transistor. When the first input current is positive and the second input current is a negative current or zero current, the second end provides a second clamping voltage lower than the second bias voltage to a gate of the first N-type transistor.
US11736071B2

Certain aspects of the present disclosure provide an amplifier. The amplifier generally includes an amplifier core circuit configured to amplify a radio frequency signal and having a first output and a second output; a transformer coupled to the amplifier core circuit, the transformer having a primary winding and a secondary winding, the primary winding being coupled to the first output and the second output of the amplifier core circuit, the secondary winding being coupled to an output node of the amplifier; and a variable resistance circuit coupled in parallel with the primary winding.
US11736066B2

An oscillation circuit including an amplifier, a feedback resistor and a first switch circuit is provided. The amplifier inverts and amplifies an oscillation signal received from an input terminal thereof to provide an output oscillation signal at an output terminal thereof. The feedback resistor is coupled between the input terminal and the output terminal, and coupled with the first switch circuit in parallel. The first switch circuit conducts the input terminal to the output terminal in one of the following situations: (1) an input voltage of the oscillation signal is higher than an output voltage of the output oscillation signal by at least a first threshold value; and (2) the output voltage is higher than the input voltage by at least a second threshold value. The first switch circuit has a first on-state resistance smaller than a resistance of the feedback resistor.
US11736065B2

A timing device includes an oven having a chamber, a crystal oscillator disposed in the chamber that generates a clock signal, and one or more sensors to generate operational characteristic signals indicative of respective operational characteristics of the crystal oscillator or the oven. The timing device includes a plurality of I/O connections and an IC device. The IC device includes processing logic to generate information that indicates how the generated clock signal is to be modified and a modulator coupled to the processing logic and the crystal oscillator. The modulator modulates the generated clock signal in relation to the information to generate a modulated clock signal indicative of the one or more operational characteristics of the crystal oscillator or the oven. The modulator outputs the modulated clock signal over a single one of the plurality of I/O connections.
US11736062B2

A method including: acquiring present operating state data of a photovoltaic array, wherein the photovoltaic array includes at least two photovoltaic strings in parallel, and the present operating state data includes present output current values of the photovoltaic strings and present irradiances corresponding to the photovoltaic strings. Determining present characteristic parameters of the photovoltaic array based on the present operating state data, wherein the present characteristic parameters include a present characteristic current value, a present current discrete rate and the present irradiances; and determining an operating state of the photovoltaic array by comparing the present characteristic parameters with standard characteristic parameters of the photovoltaic array. Determining a present operating state of a photovoltaic array by comparing present characteristic parameters determined based on real-time operating state data with standard characteristic parameters may improve the accuracy of determining the operating state of the photovoltaic array.
US11736058B2

Provided is a method for relocating a solar power unit in response to a redeployment event. A first location of a deployed solar power unit may be determined. A processor may detect a redeployment event for the solar power unit at the first location. In response to the redeployment event, the processor may determine a new location for the solar power unit. The method may further comprise relocating the solar power unit to the new location.
US11736052B2

A fan control circuit with temperature compensation includes an on-off unit and a speed adjustment unit. When determining that a loading is greater than or equal to an adjustable start threshold according to a load signal, the on-off unit controls the fan entering a working mode. In the working mode and determining that the loading is less than a speed-adjusting threshold, the on-off unit maintains a speed value of the fan at a first fixed speed. When determining the loading is greater than or equal to the speed-adjusting threshold, the speed adjustment unit adjusts the speed value according to the loading. The speed adjustment unit generates a speed displacement according to a temperature signal to compensate the speed value.
US11736050B2

A motor drive method is a method of driving a motor by a motor drive apparatus. The motor drive apparatus includes an inverter that regulates supply power to the motor that is a synchronous machine and includes a controller that controls the inverter. The method includes changing, before loss of synchronism, a speed of the motor from a second speed range to a first speed range. A speed range in which the motor is operable at a substantially fixed speed is the first speed range, and a speed range that is lower than the first speed range and includes zero speed is the second speed range.
US11736049B2

To provide a motor controller which can suppress occurrence of a torque difference between systems, even if a DC voltage difference occurs between systems, in the case where each system is provided with a DC power source. A motor controller is provided with a first controller that controls so that the first q-axis current detection value approaches the second q-axis current detection value or the second q-axis current command value obtained from the second controller, when determining that the first DC voltage is higher than the second DC voltage; and a second controller that controls so that the second q-axis current detection value approaches the first q-axis current detection value or the first q-axis current command value obtained from the first controller, when determining that the second DC voltage is higher than the first DC voltage.
US11736043B2

A vibrational lens is disclosed. The vibrational lens comprises at least two focusing plates each having a proximal and distal end. The separation between the distal ends of the at least two focusing plates is less than the separation between the proximal ends of the at least two focusing plates. The vibrational lens transmits, converges and focuses vibrational energy from a source to an energy conversion means such as piezoelectric crystals. The vibrational lens may also comprise a bimetallic structure to convert thermal fluctuations into mechanical displacement. The vibrational lens is suitable for use in a vibrational and or thermal energy harvesting system. Advantageously, the vibrational lens improves the energy efficiency of, for example, an internal combustion engine whilst mitigating the need for vibrational damping mechanisms and or thermal insulation.
US11736041B2

A suspension assembly provides a suspension frame and a supporting frame, the suspension frame being movably coupled to the supporting frame. The suspension assembly further provides at least one flexure that links the suspension frame to the supporting frame. The suspension assembly including at least one stopper to limit movement of the supporting frame and the suspension frame with respect to each other.
US11736037B2

A microelectromechanical system (MEMS) device includes a substrate and a movable element at least partially suspended above the substrate and having at least one degree of freedom. The MEMS device further includes a protrusion extending from the substrate and configured to contact the movable element when the movable element moves in the at least one degree of freedom, wherein the protrusion comprises a surface having a water contact angle of higher than about 15° measured in air.
US11736035B2

A power converter includes a plurality of switches coupled between an input bus and an output bus, a full bridge coupled between the output bus and ground, and a plurality of capacitors coupled between the plurality of switches and the full bridge, wherein one capacitor of the plurality of capacitors is connected to a midpoint of one leg of the full bridge through a switch.
US11736032B1

An electronic device may include an inverter. The inverter may convert direct current (DC) power to alternating current (AC) power. The inverter may use a clock signal at a given frequency to output corresponding alternating current signals at the given frequency. The inverter may receive a dithered clock signal that is frequency dithered using a modulating signal. The dithered clock signal may have at least three different frequency levels during a repeated cycle of the modulating signal. The at least three different frequency levels may include a fundamental frequency, a first frequency that is lower than the fundamental frequency, and a second frequency that is higher than the fundamental frequency. The dithered clock signal may be, during the repeated cycle of the modulating signal, at the fundamental frequency for fewer total periods than at the first frequency and for fewer total periods than at the second frequency.
US11736031B2

A power converter includes an unfolder connected to a three-phase source and has an output connection with three output terminals. A three-input converter connected to the unfolder produces a quasi-sinusoidal output voltage across converter output terminals. Switches of the converter selectively connect each of the three output terminals across the converter output terminals. A pulse-width modulation controller controls a first duty ratio and a second duty ratio for the converter based on a phase angle of the source and a modulation index generated from an error signal related to a control variable. The duty ratios are time varying at a rate related to a fundamental frequency of the source. The modulation index relates to output voltage of the converter, peak voltage or current of the source and/or peak current at the output terminals.
US11736022B2

A power supply includes a primary winding, a secondary winding, a switch, and a controller. The secondary winding is magnetically coupled to the primary winding. The switch is coupled to the secondary winding and controls a state of current through the secondary winding. The controller controls the state of the switch based on an integrator voltage derived from monitoring a voltage from the secondary winding. For example, the controller activates the switch to an ON state in response to detecting a condition in which the magnitude of the monitored voltage of the secondary winding crosses a threshold value such as a magnitude of an output voltage produced from the secondary winding.
US11736021B2

This power conversion device includes: a base; a control substrate; a first rectification element; a second rectification element; a smoothing reactor; an output filter circuit portion; a first main circuit wire; a second main circuit wire; and smoothing capacitors. As seen in a direction perpendicular to a surface of the control substrate, at least some of the smoothing capacitors and a target region obtained by combining a region in which the first rectification element is disposed, a region in which the second rectification element is disposed, and a region between the first rectification element and the second rectification element, overlap with each other, and a low-potential-side connection point of each smoothing capacitor connected to the second main circuit wire, is disposed so as to overlap with the control substrate and a region obtained by extending the target region in a specific direction and a direction opposite to the specific direction.
US11736020B2

A more efficient power supply system comprises a rectifier, a low voltage inverter, and a low voltage actuator, the rectifier converting a mains AC voltage into a low input DC voltage, the low voltage inverter connected to the rectifier and converting the low input DC voltage into a low supply AC voltage, and the low voltage inverter connected to the low voltage actuator to supply the low voltage actuator with power via the low supply AC voltage. A DC-DC converter connected to the rectifier converts the low input DC voltage into an extra-low DC voltage. An extra-low voltage inverter connected to the DC-DC converter converts the extra-low DC voltage into an extra-low supply AC voltage. The extra-low voltage inverter connected to an extra-low voltage actuator supplies the extra-low voltage actuator with power via the extra-low supply AC voltage.
US11736015B2

An apparatus includes a plurality of control modules coupled to a multi-phase power converter having a plurality of power stage circuits correspondingly coupled to the plurality of control modules, where each control module includes: a first port coupled to a second port of a previous control module; a second port coupled to a first port of a next control module, and being configured to generate a transmission signal for the next control module; and where the transmission signal represents at least two types of information, and is configured to control the corresponding power stage circuit to operate sequentially.
US11736014B1

An isolated, power factor corrected, converter, for operation from a three-phase AC source, comprises three power processors, each power processor connected to one of the three phases. Each power processor comprises a cascade of a first and a second power conversion stage. At least one of the first and second power converters in each power processor is configured to provide galvanic isolation through a DC Transformer between the power processor input and output. At least one of the first and second power converters in each power processor is configured to provide power factor correction at the AC source. Substantially all of the bulk energy storage and low frequency filtering is provided by storage elements at the output of the power system. Low voltage semiconductor devices may be cascaded to implement low output capacitance high voltage switches in a multi-cell resonant converter for high voltage applications.
US11736013B2

A buck-boost switching regulator includes: a power switch circuit including an input switch unit and an output switch unit which switch a first terminal and a second terminal of an inductor for buck-boost conversion; at least one low dropout regulator correspondingly coupled to at least one output high side switch in the output switch unit to correspondingly convert at least one low dropout voltage into at least one output voltage; and a bypass control circuit configured to operably generate a bypass control signal according to a conversion voltage difference between the input voltage and the corresponding low dropout voltage; wherein when the corresponding conversion voltage difference is lower than a reference voltage, the bypass control signal controls a corresponding bypass switch to electrically connect the input voltage with the corresponding low dropout node.
US11736012B2

A voltage converter circuit includes a capacitor having a first end selectively connected to an input power source through a first input switch and a second end selectively connected to the input power source through a second input switch, and a single inductor configured to generate an output voltage in response to a voltage of a node between the single inductor and the first input switch, selectively connect the input power source through the first input switch at the node, and connect the first end of the capacitor at the node.
US11736010B2

A converter circuit and related technique for providing high power density power conversion includes a reconfigurable switched capacitor transformation stage coupled to a magnetic converter (or regulation) stage. The circuits and techniques achieve high performance over a wide input voltage range or a wide output voltage range. The converter can be used, for example, to power logic devices in portable battery operated devices.
US11736009B2

In an embodiment a control circuit includes a low-power detection circuit configured to generate a control signal, wherein the low-power detection circuit is, when a driver circuit operates in a high-power mode, configured to determine a first temporal value indicative of a duration of a second phase (T2), detect whether a logic level of a zero current signal changes from a first logic level to a second logic level during the second phase (T2), in response to detecting that the logic level of the zero current signal changes from the first logic level to the second logic level, determine a second temporal value indicative of a time (TZC) elapsed between an instant (t3) when the logic level of the zero current signal changes from the first logic level to the second logic level during the second phase (T2) and the instant (t1) when the second phase (T2) ends, determine whether a ratio between the second temporal value (TZC) and the first temporal value (T2) is greater than a given number threshold value (TH), in response to determining that the ratio between the second temporal value (TZC) and the first temporal value (T2) is smaller than the given threshold value (TH), set a comparison signal to the first logic level indicating that the high-power mode is to be maintained, in response to determining that the ratio between the second temporal value (TZC) and the first temporal value (T2) is greater than the given threshold value (TH), set the comparison signal to the second logic level indicating that a low-power mode is to be activated and set the logic level of the control signal as a function of the comparison signal.
US11736008B2

The present invention relates to a multi-power supply device capable of controlling a sequence, and more particularly, to a multi-power supply device capable of controlling a sequence for a circuit in which two or more power sources are supplied from the outside and when one of the power sources has a problem so that the power is not supplied to an internal block, an internal voltage is stably supplied from another power source.
US11736006B2

A system may include a pre-charge stage and a voltage converter. The pre-charge stage may include a controller circuit configured to generate a control voltage and a current regulator electrically coupled to the controller circuit and configured to generate a first voltage, a second voltage, and a third voltage. The voltage converter may include a capacitor, a hold capacitor, and switches. The capacitor may include a first plate and a voltage on the first plate may be equal to the first voltage. The capacitor may include a second plate and a voltage on the second plate may be equal to the second voltage. The hold capacitor may include a plate and a voltage on the plate may be equal to the third voltage. The current regulator may be configured to regulate a current on the switches during accumulation of an initial charge on the capacitor and the hold capacitor.
US11736005B2

The disclosure relates to a switched capacitor converter (SCC) with gate driving circuits for limiting currents provided by switching field effect transistors. Embodiments disclosed include an SCC with gate driver curcuits providing gate voltage signals to power FETs, each gate driver circuit comprising first and second gate driver modules and configured to operate in: a first mode in which the first gate driver module provides a gate voltage signal to a power FET that switches between first and second voltage rails by operation of first and second switches connected between the pair of voltage rails; and a second mode in which, in reponse to enabling of a current limit switching signal, the first gate driver module disables switching of one of the first and second switches and the second gate driver module operates to limit a current provided to the power FET.
US11736000B2

A power converter including a control circuit configured to output a control signal, and a semiconductor module. The semiconductor module includes a semiconductor chip, a switching device provided on the semiconductor chip, the switching device being configured to be turned on and off in response to the control signal, and a first temperature sensor configured to detect a temperature of the semiconductor chip. The control circuit is configured to monitor a thermal resistance of the semiconductor module based on a first temperature detected by the first temperature sensor, a second temperature corresponding to a temperature of the semiconductor module, and a power consumption of the switching device.
US11735999B2

An inverter casing and a connection structure of an inverter and a junction box are provided. The inverter casing includes an upper casing with an inner side that is provided with a cavity for accommodating a circuit board, and an upper surface that is provided with a junction recess for accommodating a junction box that is fixedly installed in the junction recess. Moreover, a bottom part of the junction recess is provided with an elastic protrusion for connecting a high-voltage protection device, and two incoming terminals. The elastic protrusion cooperates with a knockout pin on the junction box for high-voltage power-off protection, and the two incoming terminals are connected with external cables via the junction box.
US11735997B2

The upper arm drive circuit for controlling drive of the upper arm switching element of the power conversion device includes: a capacitor disposed between a gate of the upper switching element and the output terminal of the power conversion device; a reverse current prevention circuit that is disposed between a power supply of the power conversion device and the capacitor, and that makes a current flow from a first terminal side of the reverse current prevention circuit connected to the power supply side to a second terminal side of the reverse current prevention circuit connected to the capacitor side and prevents a reverse current from flowing from the second terminal side to the first terminal side; and a switching element for capacitor charging that is turned ON in synchronization with a command signal that turns the upper arm switching element ON.
US11735992B2

Described herein is a device comprising members in a kinematic relationship. The kinematic relationship is at least partially governed by at least one magnetic flux interaction that, in effect, may provide a tunable resistance to movement, changing the rate of relative movement between the members. In one embodiment, the device comprises a first member in a kinematic relationship with at least one further member to form a system. The system moves within a limited range of motion and the system interacts when an external energizing force is imposed on the system causing the members to respond due to their kinematic and dynamic characteristics and thereby creating relative motion between the members. The trigger member is coupled to the at least the first member and moves in response to a pre-determined system movement. When the trigger member moves, the trigger member imposes a braking action on the system or a member or members thereof. The speed and/or intensity of the braking action imposed by the trigger member on the system or a member or members thereof is controlled by the trigger member rate of movement. This rate of movement is in turn governed by a magnetic flux interaction between the trigger member and the at least one first member causing formation of a magnetically induced eddy current force between the parts.
US11735989B2

An electric motor and a compressor having an electric motor are disclosed herein. The electric motor may include a stator having a stator core and a stator coil, and a rotor provided with a rotational shaft and rotatably disposed with respect to the stator. The stator coil may include a main winding and an auxiliary winding connected to each other with a phase difference. The main winding may be divided into a plurality of main windings so as to be connected to each other and disconnected from each other, and the stator coil may further include a winding changeover switch configured to provide connection and disconnection between the plurality of main windings. Such a configuration may allow operating efficiency at a low load to be increased.
US11735988B2

An electric machine for a drive system having a first DS rotor and a second DS rotor includes a first EM rotor rotatable about an axis in a first circumferential direction and including a plurality of magnets, the first EM rotor configured for mechanical coupling to the first DS rotor; and a second EM rotor rotatable about the axis in a second circumferential direction and including a plurality of windings, the second EM rotor configured for mechanical coupling to the second DS rotor and the plurality of magnets of the first EM rotor operably engaged with the plurality of windings of the second EM rotor.
US11735987B2

In a method for connecting a housing cover to a cup-shaped housing structure for an electric machine, and a cup-shaped housing structure produced by means of the method, the cup-shaped housing structure has an opening and has an opening edge surrounding the opening. The housing cover is of cup-shaped form, wherein a collar of uninterrupted encircling form is integrally formed on a cup-shaped structure wall in the region of an opening edge, which collar points radially outward. In a first method step, the housing cover is at least partially inserted into the housing opening such that a channel is formed by mutually opposite regions of the housing cover wall and of the cup-shaped housing structure wall. In a further step, the channel is at least partially or completely filled with a sealing compound, which is in particular of elastic form, or an adhesive.
US11735986B2

A method for producing a stator for an electrical machine includes providing the stator including a ring-shaped stator body, from which a plurality of stator teeth arranged spaced apart along a circumferential direction of the stator body protrude radially to the inside. A space is thereby provided between two stator teeth adjacent to one another in the circumferential direction. Second, a first injection molding of two stator teeth adjacent to one another in the circumferential direction with a plastic is performed. Third, a stator winding is arranged in the space. Fourth, a second injection molding of the stator winding arranged in the space with the plastic is performed such that an air gap and/or an air trap between the stator teeth injection molded in the second step and the stator winding after the arrangement of the stator winding in the space in the third step, is filled with the plastic.
US11735984B2

A coil forming apparatus includes: a coil winding jig including a plurality of comb-shaped grooves; a coil conveying mechanism that pivotally conveys the belt-shaped coil along at least a portion of the outer periphery of the coil winding jig; and guide members guide the belt-shaped coil in an arc shape along an outer periphery of the coil winding jig while being in contact with the side ends, and allow the plurality of straight portions to be inserted into a respective one of the plurality of comb-shaped grooves in a second half portion of the belt-shaped coil upon pivot conveyance. The guide members include a reforming portion in a first half portion of the belt-shaped coil upon pivot conveyance, and the reforming portion deforms and reforms the belt-shaped coil in an arc shape in a state sandwiching the side ends of the belt-shaped coil.
US11735980B2

A diode pack comprises a plurality of diodes seated in an assembly within a housing. The diode pack also includes a plurality of radial studs extending from an axial end of the housing relative to an axis of rotation extending through the housing. Each of the radial studs is electrically connected to a respective diode within the assembly. The diode pack further includes a center stud captured within the housing between the assembly and the housing and along the axis of rotation. A method of making a diode pack includes forming a housing of an electrically insulate material, removing a portion of the housing along an axis of rotation of the housing, mounting a center stud in the housing where the portion was removed, and assembling an assembly of diodes into the housing.
US11735969B2

A brushless motor includes a rotor and a stator having four slots into which electrical coils are placed. The stator may include a means for limiting cogging. The brushless motor having a high torque constant, low coil resistance, low coil inductance, and high thermal conductivity is provided.
US11735964B2

An electrical machine (20) comprising a stator (21) and a rotor (22) rotatably supported relative to the stator (21) is disclosed. The rotor (22) comprises two first recesses (23) and at least one second recess (24), wherein an air gap (25) is arranged between the stator (21) and the rotor (22), the two first recesses (23) are arranged in the rotor (22) and extend completely through the rotor (22) from the air gap (25) to a shaft (26) on which the rotor (22) is arranged, the two first recesses (23) are arranged in a manner displaced relative to one another by less than 180° along the circumference of the rotor (22), the at least one second recess (24) is arranged in a manner displaced relative to the first recesses (23) by at least 90° along the circumference of the rotor (22), the at least one second recess (24) does not extend through the rotor (22) to the shaft (26), and a first permanent magnet (27) is arranged each in the first recesses (23) and/or a second permanent magnet (28) is arranged each in the at least one second recess (24). In addition, a method of operating the electrical machine (20) is provided.
US11735963B2

In a frame structure of a motor, when the number of angles of a frame is 4M (M is a natural number, and M≥1), and the number of slots of an armature core is 6N (N is a natural number, and N≥1), the armature core is inserted into the frame in such a manner as to form a variation θ within a predetermined range in a circumferential direction between a reference line that is orthogonal to two opposing sides of the frame and passes through a rotation axis of the frame, and a straight line linking magnetic poles symmetric about a point with respect to the rotation axis.
US11735962B2

A wireless charging system having a power transmitter may wirelessly transfer power to a power receiver. Shield saturation, such as saturation of a ferrite structure, in the wireless power receiver may occur under some operating conditions. Saturation can lead to disruptive oscillations in power transfer. The power transmitting may include control circuitry for detecting and mitigating saturation.
US11735959B2

A wireless power feeding system includes: a power transmission circuit portion for converting DC power supplied from a main power supply, to AC power, and for supplying the AC power to a power-transmission-side coil; input power control means for controlling the AC power to be supplied to the power-transmission-side coil; a power-reception-side coil which is magnetically coupled with the power-transmission-side coil and to which AC power is transmitted from the power-transmission-side coil through magnetic energy accumulated between the power-reception-side coil and the power-transmission-side coil; a power reception circuit including a rectifier for converting the AC power transmitted to the power-reception-side coil, to DC, and a power-reception-side DC/DC converter; and power reception circuit control means for controlling rectifier output voltage to be a maximum efficiency voltage at which power transmission efficiency becomes maximum.
US11735957B2

A battery includes a first electronic circuit configured to operate in a transfer mode to wirelessly transfer power to a device and to operate in a receive mode to wirelessly receive power from the device. The first electronic circuit also configured to adapt a voltage gain of the first electronic circuit to compensate for a voltage drop between the battery and the device during any one or more of the wireless transfer of power to the device when the battery is operating in the transfer mode and the wireless receipt of power from the device when the battery is operating in the receive mode.
US11735956B2

A wireless charging system includes a transmitter and a receiver, the transmitter includes a transmitter coil and a first series matching capacitor, the transmitter coil is connected to the first series matching capacitor in series to form a first oscillation circuit, and the first oscillation circuit is configured to transfer power to the receiver, and the receiver includes a receiver coil and a second series matching capacitor, the receiver coil is connected to the second series matching capacitor in series to form a second oscillation circuit, and the second oscillation circuit is configured to receive the power transferred by the first oscillation circuit.
US11735954B2

A system for autonomously validating the topology information of an electrical power distribution system is provided. For example, the system includes a group of meters previously determined to be connected to the same transformer of an electrical power distribution system. The group of meters is configured to perform family check periodically or upon request and to identify orphan meters in the group. The identified orphan meter can contact a community device communicatively connected to meters in more than one group to request a community check. The community device performs the community check by contacting meters in other groups of meters and obtain their family signature data. The community device further determines whether the orphan meter belongs to a new family based on the voltage data of the orphan meter and the family signature data of other groups. The orphan meter can report the community check results to a headend system.
US11735950B2

Systems and methods for supplementing power to a drilling operation's generator and motor systems are disclosed. A power unit is connected to a power grid between generators and motors for a drilling operation. The power unit saps and stores energy from the electrical grid when the generator has excess capacity and providing power to the motors when the demand from the motors exceeds the available capacity of the generators.
US11735946B2

A voltage stabilizing system of a switching direct current (DC) power supply equipment is provided. DC power outputted by battery modules and a rectifier is boosted, bucked, or boosted and bucked by a voltage stabilizer circuit, and is then distributed to a plurality of external electronic devices or the battery modules. The voltage stabilizer circuit includes a main voltage stabilizer circuit and one or more slave voltage stabilizer circuits. The main voltage stabilizer circuit controls the slave voltage stabilizer circuits, and distributes the DC power respectively to the main voltage stabilizer circuit and the slave voltage stabilizer circuits. Circuit boards of the main voltage stabilizer circuit and the slave voltage stabilizer circuits are pluggably installed in a machine cabinet of the switching direct current power supply equipment.
US11735936B2

According to various embodiments, a wireless charging device can comprise: a first housing, which includes a first surface facing a first direction and a second surface facing a second direction opposite to the first direction, and includes at least one hole; a second housing arranged on the second surface of the first housing in the second direction; a coil unit arranged between the first housing and the second housing and configured to transmit power to an external device; a shielding member arranged adjacent to the coil unit and including at least one hole; and a fan arranged adjacent to the coil unit and configured to rotate.
US11735932B2

The present invention is a system and methods for an immediate shutdown of an electric vehicle charger. The system may include a sensor, which is communicatively connected to a charging connection, and a control circuit, which is communicatively connected to the sensor. If a disruption element is determined by the control circuit as a function of a charging datum of the sensor, then control circuit is configured to conduct an immediate shutdown of charger by disabling a communication of a charging connection to prevent harm to an electric vehicle, a charger, and/or a user.
US11735931B2

A battery module including a battery string and a switch is provided. The battery string includes a first battery, a second battery, a third battery, a first metal plate, and a second metal plate. The first battery includes a first positive terminal and a first negative terminal. The second battery includes a second positive terminal and a second negative terminal. The third battery includes a third positive terminal and a third negative terminal. The first metal plate is connected to the first negative terminal and the second positive terminal. The second metal plate is connected to the second negative terminal and the third positive terminal. The switch is connected to the first or second metal plate.
US11735929B1

A first power and hydrogen supply station includes a hydrogen storage unit including a hydrogen generation device that performs electrolysis of an electrolytic solution to generate hydrogen, a first flow rate control device that controls a supply amount of hydrogen obtained by the hydrogen generation device, and an accumulation unit that accumulates hydrogen obtained by the hydrogen generation device, includes a fuel cell (second power generation device) that generates power based on at least one of hydrogen obtained by the hydrogen generation device and hydrogen accumulated in the accumulation unit, includes a fuel cell power storage unit (second power storage unit) that accumulates power obtained by the fuel cell, and includes an auxiliary power supply (third power storage unit). A charge capacity of a power storage device of the fuel cell power storage unit is larger than a charge capacity of a power storage device of the auxiliary power supply.
US11735918B2

The methods and apparatus described enable automatic configuration, or commissioning, of controller devices and load control devices through a low voltage communication network controlled by one or more controller devices. These methods and apparatus further enable expansion of the load control system by connection of additional loads and or load control devices and or controller devices which will reinitialize the low voltage communication network and automatically reconfigure the controller devices and load control devices connected to the network.
US11735902B2

An integrated circuit (IC) heater circuit comprises a drive circuit configured to increase the temperature of the IC when consuming power; a temperature sensor coupled to a control node of the drive circuit to activate and deactivate the drive circuit to provide an ambient temperature for the IC, wherein current of the temperature sensor varies with temperature; and a control circuit coupled to the temperature sensor and configured to adjust variation in the temperature sensitivity of the current of the temperature sensor.
US11735892B2

A plate having an upper surface and a lower surface, a center point, and an outer perimeter. It further includes a plurality of clips for temporarily securing the plate in an opening in a landscape box. Each of the plurality of clips comprises a limb, extending vertically downward, the limb having the form of a rectangular plate and being upper bound by an upper edge and lower bound by a lower edge, wherein the upper edge is attached to the lower surface of the plate. The limb further includes a foot extending horizontally sideways from the lower edge.
US11735883B2

The present description relates, according to one aspect, to a high-peak-power laser pulse generation system (10), comprising at least one first light source (101) for emitting first laser pulses (IL), a fiber device (110) for transporting said first laser pulses, comprising at least one first multimode fiber with a single core designed to receive said first laser pulses, and a module (102) for temporally shaping said first laser pulses, arranged upstream of the fiber device, configured so as to reduce the power spectral density of said pulses by reducing the temporal coherence.
US11735882B2

A system for mounting an electrical terminal applicator to a cassette containing a plurality of terminals is provided. The system includes a support plate for fixedly attaching to the applicator, and a yoke releasably attached to the support plate. The yoke and support plate define an attachment therebetween providing at least one degree of freedom of motion of the support plate relative to the yoke in an attached state. The yoke is further configured to be movably mounted to the cassette with at least one additional degree of freedom of motion.
US11735880B1

A light bulb holder structure and a light bulb having same, in which the bulb cap of the light bulb holder is provided with a plurality of grooves in a tactful manner, and the depth of the grooves is greater than that of the external threads of the bulb cap, such that after the bulb cap is mounted on the light bulb and the light bulb is mounted on the light socket, the water accumulated between the light bulb holder structure and the light socket can be effectively discharged through the grooves. As a result, failure of the insulator (connector) on the light bulb holder structure caused by water accumulation can be avoided to a certain extent, thereby improving the reliability and safety of the light bulb.
US11735877B2

An electrical receptacle connector is enclosed by an outer shell. The outer shell includes a rear covering plate, side plates, and top plates. Two turned portions are at two sides of the rear covering plate. The side plates outwardly extend from the turned portions, respectively. Each of the top plates is bent from a top portion of the corresponding side plate and extends away from the corresponding side plate. The rear covering plate and the side plates are integrally formed as a one-piece member. Hence, the steps of manufacturing process for the connector can be reduced, the production of defective products can be reduced, and the structural strength of the connector can be improved. Moreover, numbers of holes or cracks between the rear covering plate and each of the side plates can be reduced, thereby reducing the EMI issue.
US11735874B2

A coaxial connector in combination with a coaxial cable is provided with an inner conductor supported coaxial within an outer conductor, a polymer jacket surrounding the outer conductor. A unitary connector body with a bore is provided with an overbody surrounding an outer diameter of the connector body. The outer conductor is inserted within the bore. A molecular bond is formed between the outer conductor and the connector body and between the jacket and the overbody. An inner conductor end cap may also be provided coupled to the end of the inner conductor via a molecular bond.
US11735868B2

An electrical connector assembly can include a plug connector mountable to a planar substrate and a receptacle connector configured to receive a plurality of cables and that can mate with the plug connector. The plug connector may include a first inline terminal row and a second inline terminal row exposed on a mounting face to conductively contact the planar substrate. The receptacle connector can include a plurality of terminals having termination ends aligned in common wafer plane that can be conductively terminated with the plurality of cables. The plug connector and the electrical connector are configured to establish electrical channels from the termination ends coplanar with the common wafer plan to the first and second inline terminal rows.
US11735861B2

A socket structure includes a casing, a switch, a linkage, a first hook, a gear, a rotating arm, and a second hook. The switch is exposed from the casing and disposed movably to the casing along a first direction or a second direction. The linkage is located in the casing and linked to the switch, and has a rack. The first hook is exposed from the casing and linked to the linkage. The gear is located in the casing and engages with the rack. The rotating arm having one end pivotally connected to the gear is located in the casing. The second hook is exposed from the casing and linked to the other end of the rotating arm. When the switch moves along the first direction, the linkage drives the first hook to move, the gear drives the rotating arm, and the second hook moves to an unlocked position.
US11735854B2

An electrical connector includes multiple terminals formed by cutting from a metal plate and bending. The portion of the metal plate with the terminals being removed is defined as a base plate. Each terminal has a base portion and an elastic arm connected thereto. The base portion is at least partially horizontally provided to be coplanar to the base plate. A cutting slot is formed between the base plate and the base portion. A through slot is formed between the base plate and the elastic arm. An insulating body is provided with through holes running vertically therethrough. A portion of the cutting slot and the through slot are exposed in a corresponding through hole. The terminals include signal terminals and ground terminals. The base plate forms a connecting portion between the through slot and the cutting slot of each ground terminal to be connected to the ground terminal.
US11735844B2

An interconnect system includes various anti-backout latches that are movable between an engaged position and a disengaged position. When in the engaged position, the anti-backout latches can be configured to prevent an interconnect module, such as an optical transceiver, from becoming unmated from a host module. When in the disengaged position, the anti-backout latches permit the interconnect module to become unmated from a host module. Securement members are also disclosed that secure a heat sink to a module housing of the interconnect module.
US11735835B2

An electrical connector assembly having a housing with terminal receiving passages. The terminal receiving passages have wire receiving portions. Wires are positioned in the wire receiving portions. The wires have cable jackets and center conductors. Electrically conductive components for controlling impedance of sections of the wires are positioned in the wire receiving portions of the terminal receiving passages. The electrically conductive components includes base walls with end walls, The end walls extend in a direction which is essentially perpendicular to planes of the base walls. The base walls have lengths which are approximately equal to lengths of the wire receiving portions of the terminal receiving passages. Insulation displacement slots are provided on the end walls. Lead-in sections extend from the insulation displacement slots in a direction away from the base wall.
US11735822B2

The disclosure concerns an antenna system having a clearance zone coupled to an antenna element, the clearance zone being further coupled to a ground plane. The antenna element and ground plane are electrically coupled by a short cable having a short cable routing. The short cable routing includes at least one bend wherein a portion of the short cable is disposed above the clearance zone. The short cable creates a bridging effect which reduces form factor while retaining lower frequency resonance.
US11735817B2

Systems and methods described herein include a two-dimensional antenna array of antenna pixels having length and width dimensions of less than one-half of an operational wavelength. In various examples, each antenna pixel comprises a fixed number of phase-adjustable antenna elements. The antenna elements of each antenna pixel may be coupled to the waveguide with interelement spacings selected to associate each antenna element with a distinct phase advance value. A controller identifies a target phase value for each antenna pixel that corresponds to a target beamform for the two-dimensional antenna. A controller activates and adjusts a phase response of one of the antenna elements in each antenna pixel, such that the phase advance value associate with the activated antenna element and the adjusted phase response combine to attain the target phase value for the antenna pixel as a whole.
US11735815B2

Reconfigurable antenna systems integrated with a metal case are provided herein. In certain embodiments, user equipment (UE) for a cellular network includes a metal case and an antenna system for transmitting and/or receiving wireless signals. The antenna system includes a tuning conductor formed in the metal case, a patch antenna element that is spaced apart from the tuning conductor, and a switch electrically connected in series between the tuning conductor and a ground voltage. The switch electrically connects the tuning conductor to the ground voltage in an on state and electrically disconnects the tuning conductor from the ground voltage in an off state.
US11735810B2

A multifunction wireless device having at least one of multimedia functionality and smartphone functionality, the multifunction wireless device including an upper body and a lower body, the upper body and the lower body being adapted to move relative to each other in at least one of a clamshell, a slide, and a twist manner. The multifunction wireless device further includes an antenna system disposed within at least one of the upper body and the lower body and having a shape with a level of complexity of an antenna contour defined by complexity factors F21 having a value of at least 1.05 and not greater than 1.80 and F32 having a value of at least 1.10 and not greater than 1.90.
US11735804B2

A multi-core broadband printed circuit board (PCB) antenna and methods for fabricating such an antenna are provided. One example antenna implemented with a multi-core PCB generally includes a first core structure, a second core structure disposed above the first core structure, and one or more metal layers disposed above the second core structure or below the first core structure. The first core structure includes a first core layer, a first metal layer disposed below the first core layer, and a second metal layer disposed above the first core layer. The second core structure includes a second core layer, a third metal layer disposed below the second core layer, and a fourth metal layer disposed above the second core layer. The first core layer and the second core layer may have different thicknesses.
US11735789B2

Devices and methods for managing the state of health of an electrolyte in redox flow batteries (RFB) efficiently are described. A diffusion cell is added to the RFB which controls one or more properties of the electrolytes using the diffusion of protons through a proton exchange membrane. The diffusion cell can resemble an electrochemical cell in that there are two fluid chambers divided by a proton conducting membrane. Anolyte flows through one side of the device where it contacts the proton conducting membrane, and catholyte flows through the second side of the device where it contacts the other face of the proton conducting membrane. The concentration gradient of protons from high concentration in the catholyte to low concentration in the anolyte is the driving force for proton diffusion, rather than electromotive force, which greatly simplifies the design and operation.
US11735786B1

A system that includes a wettable thermal insulator, a phase change material, and a flexible pouch. In the event a thermal event occurs, the phase change material changes from a liquid state to a gaseous state. The flexible pouch is configured to envelope the wettable thermal insulator and the phase change material in the liquid state.
US11735785B2

A battery device is provided with: an exterior body having two outer side walls; at least one battery cell group that is arranged between the two outer side walls of the exterior body and that is composed of a plurality of laminated battery cells; a first temperature-adjusting medium flow path that is provided in at least one of the two outer side walls of the exterior body and in which a temperature-adjusting medium capable of exchanging heat with the battery cells via the outer side wall flows; and a holding mechanism that brings the battery cell group into contact with the outer side wall so that heat can be exchanged and that holds the battery cell group in the exterior body by applying, to the battery cell group in the exterior body, a pressing force in a direction towards the outer side wall having the first temperature-adjusting medium flow path.
US11735784B2

The invention relates to a rechargeable battery (1) comprising at least one storage module for electrical energy and at least one cooling device (2) for cooling or controlling the temperature of the at least one storage module, wherein the cooling device (2) has a single-layer or multilayer film (4, 9) and is lying with this film (4, 9) against the at least one storage module. The cooling device is provided with at least one stiffening element (19).
US11735781B2

A charge and discharge control device that controls charging and discharging of a battery module in which a plurality of cell blocks, each including one or more unit cells, are connected in parallel to one another. A controller of the charge and discharge control device controls a current flowing through each of the cell blocks based on at least one of a current load of each of the cell blocks or a parameter relating to the current load.
US11735779B2

A method of recycling battery packs having a plurality of battery units is disclosed. The battery units have positive and negative terminals combined with each other and are supported within a housing. The battery units are separated from battery packs subsequent to the one or more battery packs being judged as being degraded. Each of the battery units is tested with a battery test stand having a fixed resistance load to obtain battery operating data indicative of variable voltage and variable current. The battery units are matched based on the battery operating data to form sets of matching battery units. And, replacement battery packs are formed by connecting positive and negative terminals of the matching battery cells within the sets.
US11735776B2

The present disclosure provides an electrolyte system for an electrochemical cell that cycles lithium ions. The electrolyte system may include an aliphatic fluorinated disulfonimide lithium salt in a mixture of organic solvents. The mixture of organic solvents may include a first solvent and a second solvent. The first solvent may include an ether solvent, a carbonate solvent, or a mixture of ether and carbonate solvents. The second solvent may include a fluorinated ether. A molar ratio of the aliphatic fluorinated disulfonimide lithium salt to the first solvent may be greater than or equal to about 1:1.2 to less than or equal to about 1:2. A molar ratio of the first solvent to the second solvent may be greater than or equal to about 1:1 to less than or equal to about 1:4.
US11735774B2

An electrolyte for a rechargeable lithium-ion battery includes a solvent consisting of 10.0 wt. % to 35.0 wt. % carbonate-based solvent and 50.0 wt. % to 80.0 wt. % propionate-based solvent, 1.1M to 1.3M lithium salt, 0.1 wt. % to 12.0 wt. % of a phosphazene-based flame retardant, 1,3,6-hexanetricarbonitrile and succinonitrile together in a range of 0.1 wt. % to 5.0 wt. %, and 1.7 wt. % to 15.0 wt. % additives.
US11735772B2

An electrochemical device includes an electrolyte having a hydroxamate or N-hydroxyamide compound.
US11735758B2

A method of manufacturing a solid oxide fuel cell stack, including alternately disposing a plurality of single fuel cells, and a plurality of interconnectors disposed alternately and holding the alternately disposed plurality of single fuel cells and plurality of interconnectors between a pair of end members, forming a space between a first end member and a first interconnector, disposing a junction member composed of an elastic member and an electrically conductive member in the space, and urging a portion of an electrically conductive member and another portion of the electrically member against the first end member and the first interconnector so that a total thickness of the portion of the electrically conductive member, the another portion of the electrically conductive member, and the elastic member prior to being disposed in the space between the first end member and the first interconnector is greater than a height of the space.
US11735754B2

A separation membrane for a redox flow battery includes: a protective film formed on each of both surfaces of a sheet substrate along with pores, the sheet substrate having thereon a number of pores communicating between the both surfaces; and an ion-exchange membrane adhered to the protective film, the ion-exchange membrane having a matrix formed of an ion-exchange resin dispersed therein with an inorganic porous powdery body attached with the ion-exchange resin obtained as a result of sulfonating rosin.
US11735750B2

An apparatus for dilution of hydrogen concentration in a fuel cell exhaust system is provided. The apparatus includes a fuel cell exhaust line configured for receiving a flow of gas from a connected fuel cell and including a flow of hydrogen gas. The apparatus further includes a mixing chamber disposed to receive the flow of hydrogen gas and configured for mixing a flow of air with the flow of hydrogen gas. The mixing chamber includes a mixing mesh including at least one tab feature configured for altering a flow direction of at least a portion of one of the flow of hydrogen gas and for creating a turbulent flow region within the mixing chamber.
US11735747B2

An electrode structure of a flow battery. A density of the vertical tow in the electrode fiber is larger than the density of the parallel tow. In the electrode fiber per unit volume, the quantity ratio of the vertical tow to the parallel tow is at least 6:4. The electrode structure includes an odd number of layers of the electrode fibers, and the porosity of other layers is larger than that of the center layer. The electrode structure includes the vertical tows, so that, the contact area between the outer surface of the electrode and the adjacent component is increased and the contact resistance is reduced; the electrode has good mechanical properties; the contact resistance of such structure is reduced by 30%-50%; and the layers of the electrode have different thickness depending on the porosity. After compression, the layers with optimized thickness have a consistent porosity.
US11735740B2

This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
US11735739B2

Articles and methods related to passivation materials on alkaline earth metals are generally described.
US11735738B2

An electrode improved for achieving a storage battery having both a high electrode strength and favorable electrode conductivity is provided. The electrode includes graphene and a modified polymer in an active material layer or includes a layer substantially formed of carbon particles and an active material layer including a modified polymer over a current collector. The modified polymer has a poly(vinylidene fluoride) structure and partly has a polyene structure or an aromatic ring structure. The polyene structure or the aromatic ring structure is sandwiched between poly(vinylidene fluoride) structures.
US11735737B2

An object of the present invention is to provide a binder which exhibits excellent dispersibility of a conductive assistant; a slurry composition and an electrode, each of which uses this binder; and an electricity storage device which is provided with this electrode. The present invention relates to a binder for an electricity storage device, in which a loss tangent tan δ in a linear region of an aqueous dispersion liquid of 0.5% by mass of the binder and 4.6% by mass of a conductive assistant satisfies tan δ>1 in a strain dispersion measurement under measurement conditions of a measurement temperature of 25° C. and a frequency of 1 Hz, and the conductive assistant is an acetylene black having an average particle diameter of 30 nm or more and 40 nm or less and a specific surface area of 65 m2/g or more and 70 m2/g or less; a slurry composition and an electrode, each of which uses this binder; an electricity storage device which is provided with this electrode; and the like.
US11735730B2

A ternary precursor of a lithium ion battery as well as a preparation method and preparation device thereof are provided. A chemical general formula of the ternary precursor is NixCoyMnz(OH)2, 0.5≤x≤0.9, 0.05≤y≤0.3, and x+y+z=1. A particle size D50 of a large-particle ternary precursor is 10.0-16.0 μm, a particle size D50 of a small-particle ternary precursor is 3.0-6.0 μm, and a span is 0.2-0.8. A nucleation and growth process of a crystal is regulated through a staged EDCF, a crystal particle size meeting specific requirements and compact particles without a cracking phenomenon can be obtained. A disc, inclined blades and an arc surface are combined, and an arc-shaped curved surface can effectively reduce a turbulence energy dissipation rate of a local area.
US11735716B2

A battery electrode composition is provided that comprises composite particles. Each composite particle may comprise, for example, active fluoride material and a nanoporous, electrically-conductive scaffolding matrix within which the active fluoride material is disposed. The active fluoride material is provided to store and release ions during battery operation. The storing and releasing of the ions may cause a substantial change in volume of the active material. The scaffolding matrix structurally supports the active material, electrically interconnects the active material, and accommodates the changes in volume of the active material.
US11735707B2

A method for processing an electrode sheet, wherein the electrode sheet has a carrier layer and an electrode material that is applied to the carrier layer only in a material region of the electrode sheet, so that a free region, which is free of electrode material, remains for the formation of diverters, wherein the electrode sheet is guided in a conveying direction by a processing device, so that the material region and the free region (run side by side, wherein the processing device has a calender through which the electrode sheet is guided and with which the material region is calendered, wherein the processing device additionally has at least one roller that is designed in such a way that it exerts a transverse tensile stress on the electrode sheet. A corresponding processing device is also specified.
US11735704B2

Methods of forming encapsulated electrochemical and/or ionically conducting particles as their use in manufacturing electrochemical cells are described.
US11735703B2

A light emitting device, according to the present embodiment, has a light emitting panel, a flexible wiring substrate, a mold resin and a protective tape. The light emitting panel has a first substrate, which is transparent to light, a plurality of conductor patterns, which are formed on a surface of the first substrate, a plurality of light emitting elements, which are connected to any of the conductor patterns, and a resin layer, which holds the light emitting elements on the first substrate. The flexible wiring substrate has a circuit pattern that is electrically connected with an exposed part of the conductor patterns. The mold resin covers the exposed part of the conductor patterns and an exposed part of the circuit pattern. The protective tape covers the mold resin, and is wound around a joint part of the light emitting panel and the flexible wiring substrate.
US11735701B2

Discussed are a display device and a method of manufacturing the same, and more particularly, to a display device including a semiconductor light emitting device having a size of several μm to several tens of μm and a method of manufacturing the same. The present disclosure provides a display device, including a base portion, a plurality of transistors disposed on the base portion, a plurality of semiconductor light emitting devices disposed on the base portion, a plurality of wiring electrodes disposed on the base portion, and electrically connected to the plurality of transistors and the plurality of semiconductor light emitting devices, a partition wall disposed on the base portion, and formed to cover the plurality of transistors, and a connection electrode connecting some of the plurality of transistors and some of the plurality of wiring electrodes, wherein the connection electrode is configured to pass through the partition wall.
US11735698B2

A light-emitting device is provided. The light-emitting device includes a plurality of first light-emitting structures provided in a first light-emitting pixel region; a plurality of second light-emitting structures provided in a second light-emitting pixel region adjacent to the first light-emitting pixel region; a barrier wall structure defining a plurality of regions in the first light-emitting pixel region and a single region in the second light-emitting pixel region; a first fluorescent layer provided in the plurality of regions; and a second fluorescent layer provided in the single region. The first fluorescent layer and the second fluorescent layer have different shapes.
US11735685B2

A method for preparing a crystalline semiconductor layer in order for the layer to be provided with a specific lattice parameter involves a relaxation procedure that is applied for a first time to a first start donor substrate in order to obtain a second donor substrate. Using the second donor substrate as the start donor substrate, the relaxation procedure is repeated for a number of times that is sufficient for the lattice parameter of the relaxed layer to be provided with the specific lattice parameter. A set of substrates may be obtained by the method.
US11735682B2

A semiconductor device includes a first semiconductor body including a substrate having a first thickness, wherein the first semiconductor body includes a first active zone that generates or receives radiation, and a second semiconductor body having a second thickness smaller than the first thickness and including a tear-off point is arranged on the substrate and connected in an electrically conducting manner to the first semiconductor body, wherein the second semiconductor body includes a second active zone that generates or receives radiation, and the second active zone generates radiation and the first active zone detects the radiation, and the first semiconductor body includes contacts on its underside for connection to the semiconductor device.
US11735673B2

In one embodiment, a semiconductor device includes a stacked film including electrode layers and insulating layers that are alternately stacked in a first direction. The device further includes a first insulator, a charge storage layer, a second insulator and a semiconductor layer that are provided in the stacked film. The device further includes a third insulator provided between an electrode layer and an insulating layer and between the electrode layer and the first insulator, and including aluminum oxide having an α crystal phase.
US11735666B2

Methods for manufacturing a semiconductor structure are provided. The semiconductor structure includes a substrate a substrate and channel layers vertically stacked over the substrate. The semiconductor structure also includes a dielectric fin structure formed adjacent to the channel layers and a gate structure abutting the channel layers and the dielectric fin structure. The semiconductor structure also includes a source/drain structure attached to the channel layers and a contact formed over the source/drain structure. The semiconductor structure also includes a Si layer covering a portion of a top surface of the source/drain structure. In addition, the Si layer is sandwiched between the dielectric fin structure and the contact.
US11735660B2

A method includes forming a fin in a substrate. The fin is etched to create a source/drain recess. A source/drain feature is formed in the source/drain recess, in which a lattice constant of the source/drain feature is greater than a lattice constant of the fin. An epitaxy coat is grown over the source/drain feature, in which a lattice constant of the epitaxy coat is smaller than a lattice constant of the fin.
US11735658B2

A method for manufacturing a semiconductor device includes forming a source layer on a semiconductor substrate, forming a channel layer on the source layer, and forming a drain layer on the channel layer. The source, channel and drain layers are patterned into at least one fin, and a cap layer is formed on a lower portion of the at least one fin. The lower portion of the at least one fin includes the source layer and part of the channel layer. The method further includes forming a gate structure comprising a gate dielectric layer and a gate conductor on the at least one fin and on the cap layer. The cap layer is positioned between the lower portion of the at least one fin and the gate dielectric layer.
US11735648B2

A semiconductor structure includes a first fin and a second fin protruding from a substrate, isolation features over the substrate to separate the first and the second fins, where a top surface of each of the first and the second fins is below a top surface of the isolation features, inner fin spacers disposed along inner sidewalls of the first and the second fins, where the inner fin spacers have a first height measured from a top surface of the isolation features, outer fin spacers disposed along outer sidewalls of the first and the second fins, where the outer fin spacers have a second height measured from the top surface of the isolation features that is less than the first height, and a source/drain (S/D) structure merging the first and the second fins, where the S/D structure includes an air gap having a top portion over the inner fin spacers.
US11735641B2

Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a semiconductor fin formed on a substrate; and a gate structure disposed over a channel region of the semiconductor fin, the gate structure including a gate dielectric layer and a gate electrode, wherein the gate dielectric layer includes a bottom portion and a side portion, and the gate electrode is separated from the side portion of the gate dielectric layer by a first air gap.
US11735640B2

A semiconductor device including: a substrate that includes a first active region and a second active region; a first source/drain pattern on the first active region; a second source/drain pattern on the second active region; a separation dielectric pattern on the substrate between the first source/drain pattern and the second source/drain pattern; and a first contact pattern on the first source/drain pattern, wherein the first contact pattern includes: a first metal pattern; a first barrier pattern between the first metal pattern and the first source/drain pattern; and a second barrier pattern between the first barrier pattern and the first source/drain pattern, wherein the first barrier pattern contacts the separation dielectric pattern and extends along a sidewall of the first metal pattern adjacent to the separation dielectric pattern.
US11735639B2

This application discloses an array substrate and a display panel. The array substrate includes a first metal layer and a second metal layer, and an area of a region overlapping the second metal layer on the first metal layer is less than that of a region not overlapping the second metal layer on the first metal layer.
US11735638B2

A thin film transistor array substrate and an electronic device including the thin film transistor array are disclosed. The thin film transistor comprises a substrate, a first active layer on the substrate, a gate electrode on the first active layer, a second active layer on the gate electrode such that the gate electrode is between the first active layer and the second active layer. The gate electrode is configured to drive the first active layer and the second active layer. Thereby, it is possible to provide the thin film transistor array substrate including one or more thin film transistors having high current characteristics in a small area, and the electronic device including the thin film transistor array substrate.
US11735631B2

A semiconductor device includes: a fin-type active region extending on a substrate in a first direction that is parallel to an upper surface of the substrate; and a source/drain region in a recess region extending into the fin-type active region, wherein the source/drain region includes: a first source/drain material layer; a second source/drain material layer on the first source/drain material layer; and a first dopant diffusion barrier layer on an interface between the first source/drain material layer and the second source/drain material layer.
US11735624B2

The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a dielectric stack disposed over a substrate. The dielectric stack has a first plurality of layers interleaved between a second plurality of layers. The dielectric stack has one or more surfaces that define a plurality of indentations recessed into a side of the dielectric stack at different vertical heights corresponding to the second plurality of layers. A capacitor structure lines the one or more surfaces of the dielectric stack. The capacitor structure includes conductive electrodes separated by a capacitor dielectric.
US11735623B2

This disclosure is related to post processing steps for integrating of micro devices into system (receiver) substrate or improving the performance of the micro devices after transfer. Post processing steps for additional structure such as reflective layers, fillers, black matrix or other layers may be used to improve the out coupling or confining of the generated LED light. In another example, dielectric and metallic layers may be used to integrate an electro-optical thin film device into the system substrate with the transferred micro devices. In another example, color conversion layers are integrated into the system substrate to create different output from the micro devices.
US11735621B2

Disclosed herein is a method comprising: forming electrical contacts on a first surface of an epitaxial layer supported on a substrate, the first surface being opposite from the substrate; bonding the epitaxial layer to an electronics layer, wherein the first surface faces the electronics layer and the electrical contacts on the first surface are bonded to electrical contacts of the electronics layer; exposing a second surface opposite the first surface by removing the substrate; and forming a common electrode on the second surface.
US11735615B2

An imaging device including: a photoelectric converter; a protection member provided on a light incidence side of the photoelectric converter; a substrate opposed to the protection member with the photoelectric converter interposed therebetween and having a first surface on the photoelectric converter side and a second surface opposed to the first surface; a rewiring layer provided in a selective region of the second surface of the substrate; and a protective resin layer provided on the second surface of the substrate, the second surface of the substrate having an external terminal coupling region exposed from the protective resin layer, and a stress relaxation region exposed from the protective resin layer and disposed at a position different from the external terminal coupling region.
US11735607B2

Provided is an image sensor including a substrate, an element separation film provided on the substrate and having a mesh shape, a plurality of pixel regions formed by the element separation film, the plurality of pixel regions including a first pixel region and a second pixel region that is adjacent to the first pixel region, the element separation film being interposed between the first pixel region and the second pixel region, a first lens provided to extend along the first pixel region and the second pixel region, a first color filter configured to transmit light focused by the first lens to the first pixel region and the second pixel region, and a color filter grid forming a region in which the first color filter is provided, and at least partially overlapping the first pixel region and the second pixel region in a vertical direction.
US11735603B2

Disclosed in embodiments of the present disclosure are a display substrate, a display panel, and a method for preparing the display substrate. The display substrate includes: a base substrate; a first source-drain layer, including first source-drain electrodes in the first area, and a first gate located in the second area; a first active layer, including a poly-silicon active layer located in the first area; a first gate layer, including a second gate and a connecting electrode located in the first area; a second active layer, including an oxide active layer located in the second area; a second gate layer, including a third gate located in the second area; and a second source-drain layer, including a second source-drain electrodes in the second area, and a lapping electrode located in the first area.
US11735598B2

To provide a novel shift register. Transistors 101 to 104 are provided. A first terminal of the transistor 101 is connected to a wiring 111 and a second terminal of the transistor 101 is connected to a wiring 112. A first terminal of the transistor 102 is connected to a wiring 113 and a second terminal of the transistor 102 is connected to the wiring 112. A first terminal of the transistor 103 is connected to the wiring 113 and a gate of the transistor 103 is connected to the wiring 111 or a wiring 119. A first terminal of the transistor 104 is connected to a second terminal of the transistor 103, a second terminal of the transistor 104 is connected to a gate of the transistor 101, and a gate of the transistor 104 is connected to a gate of the transistor 102.
US11735597B2

An array substrate, includes: a substrate, three metal layers stacked on the substrate, and a plurality of signal line leads disposed in a peripheral area of the array substrate. The plurality of signal line leads are distributed in at least two of the three metal layers.
US11735591B2

A method includes providing a structure having two fins extending from a substrate; an isolation structure isolating bottom portions of the fins; source/drain (S/D) features over each of the fins; a dielectric fin oriented lengthwise parallel to the fins and disposed between the two fins and over the isolation structure; a dummy gate stack over the isolation structure, the fins, and the dielectric fin; and one or more dielectric layers over sidewalls of the dummy gate stack. The method further includes removing the dummy gate stack to result in a gate trench within the one or more dielectric layers, wherein the dielectric fin is exposed in the gate trench; trimming the dielectric fin to reduce a width of the dielectric fin; and after the trimming, forming a high-k metal gate in the gate trench.
US11735580B2

An ESD protection device (100) is disclosed. More particularly, the ESD protection device is configured so that a gate electrode (140) and a capacitor electrode (170) electrically connected to a drain region (162) are spaced apart from each other by a preset distance, and partially or entirely overlap each other, thereby increasing a capacitance (Cgd) between the gate electrode and the drain region.
US11735575B2

Interconnecting a first chip and a second chip by a bridge member includes a chip handler for handling the first chip and the second chip. Each of the first chip and the second chip has a first surface including a first set of terminals and a second surface opposite to the first surface. The chip handler has an opening and at least one support surface for supporting the first surfaces of the first chip and the second chip when the first chip and the second chip are mounted to the chip handler. A chip support member supports the first chip and the second chip from the second surfaces, and a bridge handler is provided for inserting the bridge member through the opening of the chip handler and for placing the bridge member onto the first sets of terminals of the first chip and the second chip.
US11735565B2

A plurality of semiconductor devices are arranged in a stack. Individual semiconductor devices within the stack are selected by an identity signal sent into the stack. The signal is compared within each stack to a unique stack identifier stored within each of the semiconductor devices and, when the signal is the same as the unique stack identifier, the semiconductor device is selected while, when the signal is not the same as the unique stack identifier, the semiconductor device remains within the default bypass mode.
US11735560B2

An electronic-component-embedded substrate includes a base having flexibility and cavities formed therethrough, electronic components disposed in the cavities, respectively, and interconnects disposed on the base and connected to the electronic components, wherein the interconnects include a metal foil having openings that abut the electronic components, and include a plating layer disposed on the metal foil and connected to the electronic components through the openings.
US11735559B2

A semiconductor package and a fabrication method of the semiconductor package are disclosed. First and second redistribution layer patterns are formed on a semiconductor substrate including a chip region and a scribe lane region to provide a bonding pad portion and an edge pad portion, respectively. A polymer pattern is formed to reveal the bonding pad portion and a portion of the edge pad portion. A dicing line is set on the scribe lane region. A stealth dicing process is performed along the dicing line to separate a semiconductor chip including the bonding pad portion from the semiconductor substrate. The semiconductor chip is disposed on a package substrate. A bonding wire is formed to connect the bonding pad portion to the package substrate. The bonding wire is supported by an edge of the polymer pattern to be spaced apart from the revealed portion of the edge pad portion.
US11735551B2

Embodiments herein relate to systems, apparatuses, or processes directed to an interconnect joint that includes multiple core balls within a solder compound where the multiple core balls are substantially linearly aligned. The multiple core balls, which may include copper or be a polymer, couple with each other within the solder and form a substantially linear alignment during reflow. In embodiments, four or more core balls may be used to achieve a high aspect ratio interconnect joint with a tight pitch.
US11735541B2

A target element to be protected and a protrusion are arranged on a substrate. An insulating film arranged on the substrate covers the target element and at least a side surface of the protrusion. An electrode pad for external connection is arranged on the insulating film. The electrode pad at least partially overlaps the target element and the protrusion as seen in plan view. A maximum distance between the upper surface of the protrusion and the electrode pad in the height direction is shorter than a maximum distance between the upper surface of the target element and the electrode pad in the height direction.
US11735539B2

A semiconductor device has an electronic component assembly, and a plurality of discrete antenna modules disposed over the electronic component assembly. Each discrete antenna module is capable of providing RF communication for the electronic component assembly. RF communication can be enabled for a first one of the discrete antenna modules, while RF communication is disabled for a second one of the discrete antenna modules. Alternatively, RF communication is enabled for the second one of the discrete antenna modules, while RF communication is disabled for the first one of the discrete antenna modules. A bump is formed over the discrete antenna modules. An encapsulant is deposited around the discrete antenna modules. A shielding layer is formed over the electronic components assembly. A stud or core ball can be formed internal to a bump connecting the discrete antenna modules to the electronic component assembly.
US11735532B2

A semiconductor package includes a lower connection structure, a semiconductor chip on the lower connection structure, an upper connection structure including a first conductive pattern layer on the semiconductor chip, a first insulating layer on the first conductive pattern layer, a second conductive pattern layer on the first insulating layer, a first via penetrating the first insulating layer to extend between the first conductive pattern layer and the second conductive pattern layer, and a second insulating layer extending between a side surface of the first via and the first insulating layer, and an intermediate connection structure between the lower connection structure and the upper connection structure. A chemical composition of the first insulating layer may differ from a chemical composition of the second insulating layer.
US11735531B2

A foundation layer and methods of forming a conductive via are described. A die pad is formed over a die. A seed layer is deposited over the die pad and the foundation layer. A first photoresist layer is deposited over the seed layer, and the first layer is patterned to form a conductive line opening over the die pad. A conductive material is deposited into the conductive line opening to form a conductive line. A second photoresist layer is deposited over the first layer, and the second layer is patterned to form a via opening over the conductive line. The conductive material is deposited into the via opening to form the conductive via, where the conductive material only deposits on portions of exposed conductive line. The second and first layers are removed. Portions of exposed seed layer are recessed, and then a top surface of the conductive via is exposed.
US11735528B2

A semiconductor memory stack connected to a processing unit, and associated methods and systems are disclosed. In some embodiments, the semiconductor memory stack may include one or more memory dies attached to and carried by a memory controller die—e.g., high-bandwidth memory. Further, a processing unit (e.g., a processor) may be attached to the memory controller die without an interposer to provide the shortest possible route for signals traveling between the semiconductor memory stack and the processing unit. In addition, the semiconductor memory stack and the processing unit can be attached to a package substrate without an interposer.
US11735525B2

A semiconductor device includes a first power rail, a first power input structure, a circuit and a first middle-of-line rail. The first power rail is formed in a first rail opening within a first isolation trench on a substrate. The first power input structure is configured to connect with a first terminal of a power source that is external of the semiconductor device to receive electrical power from the power source. The circuit is formed, on the substrate, by layers between the first power rail and the first power input structure. The first middle-of-line rail is formed by one or more of the layers that form the circuit. The first middle-of-line rail is configured to deliver the electrical power from the first power input structure to the first power rail, and the first power rail provides the electrical power to the circuit for operation.
US11735523B2

Techniques are employed to mitigate the anchoring effects of cavity sidewall adhesion on an embedded conductive interconnect structure, and to allow a lower annealing temperature to be used to join opposing conductive interconnect structures. A vertical gap may be disposed between the conductive material of an embedded interconnect structure and the sidewall of the cavity to laterally unpin the conductive structure and allow uniaxial expansion of the conductive material. Additionally or alternatively, one or more vertical gaps may be disposed within the bonding layer, near the embedded interconnect structure to laterally unpin the conductive structure and allow uniaxial expansion of the conductive material.
US11735518B2

A method of making a semiconductor device, includes: forming a first molding layer on a substrate; forming a first plurality of vias in the first molding layer; forming a first conductive line over the first molding layer, wherein the first conductive line is laterally disposed over the first molding layer and a first end of the conductive line aligns with and is electrically coupled to a first via of the first plurality of vias; forming a second molding layer above the first molding layer; and forming a second plurality of vias in the second molding layer, wherein a second via of the second plurality of vias aligns with and is electrically coupled to a second end of the conductive line, and wherein the second plurality of vias, the conductive line, and the first plurality of vias are electrically coupled to one another.
US11735512B2

A leadframe including a metal oxide layer on at least a portion of the leadframe are disclosed. More specifically, leadframes with a metal layer and a metal oxide layer formed on one or more leads before a tin finish plating layer is formed are described. The layers of metal and metal oxide between the one or more leads and the tin finish plating layer reduce the formation of tin whiskers, thus reducing the likelihood of shorting and improving the overall reliability of the package structure and device produced.
US11735511B2

A semiconductor device includes: a chip; a circuit element formed in the chip; an insulating layer formed over the chip so as to cover the circuit element; a multilayer wiring region formed in the insulating layer and including a plurality of wirings laminated and arranged in a thickness direction of the insulating layer so as to be electrically connected to the circuit element; at least one insulating region which does not include the wirings in an entire region in the thickness direction of the insulating layer and is formed in a region outside the multilayer wiring region in the insulating layer; and at least one terminal electrode disposed over the insulating layer so as to face the chip with the at least one insulating region interposed between the at least one terminal electrode and the chip.
US11735506B2

In an example, an apparatus comprises a lead frame that includes a first row of leads, a first pad coupled to the first row of leads, and a second row of leads parallel to the first row of leads. The lead frame also includes a second pad coupled to the second row of leads. The first and second pads are separated by a gap, and each of the first and second pads has a substantially uniform thickness. The apparatus also includes a device coupled to the first and second pads. The first and second pads are exposed to an exterior of the apparatus.
US11735501B1

A 3D semiconductor device, the device including: a first level including a plurality of first metal layers; a second level, where the second level overlays the first level, where the second level includes at least one single crystal silicon layer, where the second level includes a plurality of transistors, where each transistor of the plurality of transistors includes a single crystal channel, where the second level includes a plurality of second metal layers, where the plurality of second metal layers include interconnections between the transistors of the plurality of transistors, and where the second level is overlaid by a first isolation layer; and a connective path between the plurality of transistors and the plurality of first metal layers, where the connective path includes a via disposed through at least the single crystal silicon layer, and where at least one of the transistors includes a four sided gate.
US11735495B2

Package assemblies with a molded substrate comprising fluid conduits. The fluid conduits may be operable for conveying a fluid (e.g., liquid and/or vapor) through some portion of the package substrate structure. Fluid conduits may be at least partially defined by an interconnect trace comprising a metal. The fluid conveyance may improve thermal management of the package assembly, for example removing heat dissipated by one or more integrated circuits (ICs) of the package assembly.
US11735474B2

A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate, and a gate structure formed over the fin structure. The FinFET device structure includes a source/drain (S/D) structure formed over the fin structure and adjacent to the gate structure, and an S/D contact structure formed over the S/D structure and adjacent to the gate structure. The FinFET device structure also includes a protection layer formed on the S/D contact structure, and the protection layer and the S/D contact structure are made of different materials. The protection layer has a bottommost surface in direct contact with a topmost surface of the S/D contact structure.
US11735473B2

Methods of manufacturing memory devices having memory cells and corresponding selectors, and associated systems and devices, are disclosed herein. In one embodiment, a method of manufacturing a memory device includes (a) removing a protection layer formed over the memory cells and (b) forming a cap layer over the memory cells before forming a conductive via through the memory device. The cap layer is configured to protect the memory cells during operation and can comprise a resistive material. The protection layer can be more efficiently removed with improved process margin and less device health impact using a polishing process before the conductive via is formed, thus increasing the manufacturing margin of the memory device.
US11735461B2

A semiconductor structure disposed on a temporary carrier board is provided. Multiple adhesive layers are disposed on the temporary carrier. The semiconductor structure includes an adhesive-layer structure and a micro light-emitting element. The adhesive-layer structure includes a mending adhesive layer and a buffer layer. The mending adhesive layer is disposed on the temporary carrier board. The micro light-emitting element is disposed on the mending adhesive layer. The buffer layer is disposed between the mending adhesive layer and the micro light-emitting element. A height of the mending adhesive layer is less than a height of each of the adhesive layers in a thickness direction of the temporary carrier board. A sum of the height of the mending adhesive layer and the height of the buffer layer is greater than or equal to a height of each of the adhesive layers.
US11735459B2

The present disclosure relates to an electrostatic chuck. The electrostatic chuck according to the present disclosure may include a base substrate; an electrostatic chuck plate fixed on the base substrate, the electrostatic chuck plate having an electrode therein; and an electrode part disposed in a hole in the base substrate to supply power to the electrode, wherein the electrode part may include a housing inserted into the hole in the base substrate, an electrode rod passing through the inner wall of the housing such that one end thereof is in contact with the electrode; and an elastic support body configured to support the electrode rod at multiple points on the inner wall of the housing.
US11735453B2

A system for transferring a substrate includes a substrate transporter at which is captured a first image with which a position of the substrate at the substrate transporter is determined; a tray at which is captured a second image with which a position of each of a plurality of substrates relative to the tray is determined; a substrate mover with which the substrate is movable in a revolving manner between the substrate transporter and the tray, the substrate mover including: an arm portion movable in the revolving manner between the substrate transporter and the tray, and a substrate securing portion movable together with the arm portion; and an imager with which the first image and the second image are captured, the imager connected to the arm portion and movable in the revolving manner between the substrate transporter and the tray together with the arm portion.
US11735436B2

An apparatus for fabricating a semiconductor device has a housing defining a buffer chamber, a plurality of reactor ports formed in the housing for establishing interfaces with a plurality of process chambers that are to receive a wafer during a fabrication process to fabricate the semiconductor device, a wafer positioning robot positioned within the buffer chamber to transport the wafer between the plurality of process chambers through the plurality of reactor ports, a purge port formed in the housing for introducing a purge gas into the buffer chamber, a pump port formed in the housing for exhausting a portion of the purge gas from the buffer chamber, and a first flow enhancer that directs the purge gas flowing in an axial direction along a longitudinal axis of the purge port into the buffer chamber in a plurality of radial directions relative to the longitudinal axis.
US11735435B2

A quad flat no lead (“QFN”) package that includes a die having an active side positioned substantially in a first plane and a backside positioned substantially in a second plane parallel to the first plane; a plurality of separate conductive pads each having a first side positioned substantially in the first plane and a second side positioned substantially in the second plane; and mold compound positioned between the first and second planes in voids between the conductive pads and the dies. Also a method of producing a plurality of QFN packages includes forming a strip of plastic material having embedded therein a plurality of dies and a plurality of conductive pads that are wire bonded to the dies and singulating the strip into a plurality of QFN packages by cutting through only the plastic material.
US11735433B2

A substrate structure, a package structure, and a method for manufacturing an electronic package structure provided. The substrate structure includes a dielectric layer, a trace layer, and at least one wettable flank. The dielectric layer has a first surface and a second surface opposite to the first surface. The trace layer is embedded in the dielectric layer and exposed from the first surface of the dielectric layer. The at least one wettable flank is stacked with a portion of the trace layer embedded in the dielectric layer.
US11735432B2

A method for removing amorphous regions from a surface of a crystal substrate uses an accelerated neutral beam including reactive gas species for removing or reactively modifying material surfaces without sputtering. Accelerated neutral atom beam enabled surface reactions remove surface contaminants from substrate surfaces to create an interface region with exposed crystal lattice in preparation for next phase processing.
US11735431B2

In a pattern formation method, a first organic film is formed on a film to be etched and contains a metal. A second organic film is formed on the first organic film, and has a higher density than a density of the first organic film. The first and second organic films are patterned to form a mask, and the film to be etched is etched using the mask.
US11735423B2

Based on the fact that a film thickness of a film formed in a film formation processing of repeatedly performing a first sequence varies according to a temperature of the surface on which the film is to be formed, the film formation processing is performed after the temperature of each region of the surface of the wafer is adjusted to reduce a deviation of a trench on the surface of the wafer, so that the film is very precisely formed on the inner surface of the trench while reducing the deviation of the trench on the surface of the wafer. When the trench width is narrower than a reference width, an etching processing of repeatedly performing a second sequence is performed in order to expand the trench width, so that the surface of the film provided in the inner surface of the trench is isotropically and uniformly etched.
US11735406B2

A sample support body is a sample support body for ionizing a sample, including: a substrate having an irregular porous structure formed to communicate a first surface and a second surface opposite to each other; and a conductive layer provided at least on the first surface.
US11735400B2

Provided are a faraday cleaning device and a plasma processing system, the device comprising a reaction chamber, a bias electrode, a wafer, a chamber cover, a coupling window, an air inlet nozzle, a vertical coil, and a faraday layer, wherein the coupling window is installed at the upper end face of the chamber cover, the chamber cover is installed at the upper end face of the reaction chamber, the bias electrode is assembled inside the reaction chamber, the wafer is installed at the upper end face of the bias electrode, the air inlet nozzle is assembled inside the coupling window, the faraday layer is installed at the upper end face of the coupling window, and the vertical coil is assembled at the upper end face of the faraday layer.
US11735396B2

An inductively coupled plasma processing apparatus includes a lower chamber providing a space for a substrate, a high-frequency antenna that generates inductively coupled plasma in the lower chamber, dielectric windows disposed between the lower chamber and the high-frequency antenna, metal windows alternatingly disposed between the dielectric windows, and gas inlet pipes disposed in each of the metal windows, wherein each of the gas inlet pipes includes nozzles that introduce gases to the lower chamberamber.
US11735395B2

To provide a technique capable of measuring high-frequency electrical noise in a charged particle beam device. A charged particle beam device 100 includes an electron source 2 for generating an electron beam EB1, a stage 4 for mounting a sample 10, a detector 5 for detecting secondary electrons EB2 emitted from the sample 10, and a control unit 7 electrically connected to the electron source 2, the stage 4, and the detector 5 and can control the electron source 2, the stage 4, and the detector 5. Here, when the sample 10 is mounted on the stage 4, and a specific portion 11 of the sample 10 is continuously irradiated with the electron beam EB1 from the electron source 2, the control unit 7 can calculate a time-series change in irradiation position of the electron beam EB1 based on an amount of the secondary electrons EB2 emitted from the specific portion 11, and can calculate a feature quantity for a shake of the electron beam EB1 based on the time-series change in irradiation position. Further, the feature quantity includes a frequency spectrum.
US11735387B2

A coil drive device energizes an operation coil to close an electromagnetic contactor. A rectifier outputs, to a power supply line, an input voltage obtained by full-wave rectification of an AC voltage supplied from a main power source. A controller controls on and off of a switching element connected to a power supply line in series with the operation coil. The controller controls a duty ratio that is an on period ratio of the switching element in each switching period in accordance with a value of a parameter calculated from a detected value of the input voltage, in at least a partial period after start of energization of the operation coil in response to a close command for the electromagnetic contactor.
US11735380B2

A keyswitch structure includes a base, a cap disposed corresponding to the base, a restoring member disposed between the base and the cap, and a tactile adjustment unit. The cap has a cam portion movable relative to the base. The restoring member is configured to provide a restoring force to enable the cam portion to move away from the base. The tactile adjustment unit is disposed corresponding to the cam portion and includes a holder and a tactile feedback member mounted on the holder. The holder is movable relative to the base to change a position of the tactile feedback member relative to the cam portion, so as to change a pressing force required for the cam portion to move toward the base.
US11735364B2

A multilayer electronic component includes a body including a dielectric layer and an internal electrode; and an external electrode including an electrode layer disposed on the body and connected to the internal electrode and a conductive resin layer disposed on the electrode layer, and the conductive resin layer includes a metal wire, a conductive metal, and a base resin.
US11735362B2

A dielectric ceramic composition and a multilayer ceramic capacitor comprising the same are provided. The dielectric ceramic composition includes a BaTiO3-based base material main ingredient and an accessory ingredient, where the accessory ingredient includes dysprosium (Dy) and cerium (Ce) as first accessory ingredients. A total content of Dy and Ce is greater than 0.25 mol % and equal to or less than 1.0 mol % based on 100 mol % of the base material main ingredient.
US11735359B2

In one embodiment, a magnet includes a plurality of layers, each layer having a microstructure of sintered particles. The particles in at least one of the layers are characterized as having preferentially aligned magnetic orientations in a first direction.
US11735353B2

An inductor component comprising an insulating layer containing no magnetic substance, a spiral wiring formed on a first principal surface of the insulating layer and wound on the first principal surface, and a magnetic layer in contact with at least a portion of the spiral wiring.
US11735351B2

A pair of iron-based E-shaped cores is arranged so that middle leg core parts of respective E-shaped cores are disposed opposite each other, and coils are respectively attached to the middle leg core parts in a winding state. A cross-sectional area of the middle leg core part orthogonal to an extending direction thereof and a cross-sectional area of an outer leg core part orthogonal to an extending direction thereof have a specified relationship.
US11735350B2

An inductor includes a body including a coil and a magnetic portion, and having two facing principal surfaces and side surfaces adjacent to the two principal surfaces. The coil includes a winding portion formed from a conductor and a pair of extended portions extended from the winding portion. The magnetic portion includes magnetic powder and contains the coil. The winding portion includes a first meandering portion and a second meandering portion each including straight portions continuously formed so as to extend substantially circularly from an outer side to an inner side of the body when the winding portion is seen through the principal surfaces of the body from the principal surfaces. The first and second meandering portions are continuously formed on the inner side of the body. The straight portions constituting the first meandering portion and the straight portions constituting the second meandering portion are disposed apart from each other.
US11735341B2

The present invention relates to an R-T-B-based sintered magnet including: a rare earth element R; a metal element T which is Fe, or includes Fe and Co with which a part of Fe is substituted; boron; and a boride forming element M which is a metal element other than rare earth elements and the metal element T and forms a boride, in which the R-T-B-based sintered magnet includes: a main phase which includes a crystal grain of an R-T-B-based alloy; and a boride phase which includes a compound phase based on the boride of the boride forming element M, and is generated on a preferential growth plane of the crystal grain of the main phase.
US11735339B2

A current feedthrough seal assembly (1) for insertion into and sealing a wall opening (WO) of a climate chamber (KK) comprises a plastic core (10) formed in a step-like shape in an axial direction thereof so as to be inserted into the wall opening (WO) of the climate chamber (KK), so that, when inserted, substantially the whole of the plastic core (10) is located in the wall opening (WO), and a flange (11) is formed at an axial end of the plastic core (10) to protrude beyond the wall opening in the radial direction of the plastic core (10) to abut against one (I) of an internal or external wall (I, A) of the climate chamber (KK), at least two elongated power conducting members (20) accommodated in parallel to each other inside the plastic core (10) and extending through the plastic core (10) and a press ring seal (30) interposed between an inner peripheral surface of the wall opening (WO) and an outer peripheral surface of the plastic core (10) on an opposite axial side thereof with respect to the flange (11) of the plastic core (10).
US11735338B2

Data/telecommunication cables that include one or more layers of an integral, bonded electromagnetic shield are described. The shield may be configured to form an electrical ground path.
US11735334B2

Provided are a stretchable wire tape for a textile that can maintain high levels in all of stretchability, electrical conductivity, durability, an insulating property, and design and can also have a reduced production cost, wearable devices, and a method for producing textiles having wires. The stretchable wire tape for the textile includes a stretchable electrically conductive wire, and stretchable insulating films each including a first face and a second face opposite to the first face, the stretchable insulating films being bonded to opposite sides of the stretchable electrically conductive wire on their first faces. Since the stretchable insulating films are bonded to the opposite sides of the stretchable electrically conductive wire via bonding layers, durability and an insulating property can be secured while stretchability and electrical conductivity of the electrically conductive wire can be maintained, and design can also be improved.
US11735328B2

A containment building includes a wall made of a material of the concrete type that delimits a space and at least one viewing module, the viewing module including at least one window arranged in an opening in the wall, the window having a frame in which at least one optical unit that provides protection from high-energy and/or neutron radiation is placed, the frame being fitted in the opening, the viewing module also having a protective element that includes a sash bearing a pane and is arranged so as to close the opening at the face on the inside of the building, the viewing module thus including at least one interface between two surfaces. The containment building also includes at least one sealing system arranged at at least one interface.
US11735321B2

Provided is a system for the prognostics of the chronic diseases after the medical examination based on the multi-label learning, including a data acquisition module, a data preprocessing module, a basic predicting model constructing module, and a local predicting module. The data acquisition module is configured to acquire physical examination data of a physical examination user. The basic predicting model constructing module is configured to construct a multi-label learning model for a physical examination scenario. The local predicting module includes a local model training unit and a predicting unit. The local model training unit adjusts the basic predicting model into a local predicting model, and solidifies the local predicting model into the local predicting module. The predicting unit outputs a predicted prognostic index for an occurrence of a plurality of chronic diseases, and finally acquires a future expected occurrence time of the chronic diseases.
US11735319B2

A method and a system for processing medical data are provided. The method executed by a first device and a second device includes: the first device performs desensitization processing on first medical data in a first secure working environment to obtain desensitized data, provides the desensitized data to the second device; the desensitization processing is preset in the first secure working environment, and the first medical data is stored in the first secure working environment; the second device performs restoration processing on the desensitized data in a second secure working environment to obtain the first medical data, the restoration processing is preset in a second secure working environment, and the restoration processing corresponds to the desensitization processing.
US11735318B2

Presented herein are techniques for generating, updating, and/or using a virtual hearing model associated with a recipient of an auditory prosthesis. The virtual hearing model is generated and updated for the recipient based on psychoacoustics data associated with the recipient and, in certain cases, based on psychoacoustics data gathered from one or more selected populations of auditory prosthesis recipients. The recipient-specific virtual hearing model can be used, in real-time, to determine one or more settings for the auditory prosthesis.
US11735316B2

The present disclosure provides a method and apparatus of labeling a target in an image, and a computer recording medium. The method includes: acquiring a first neural network, the first neural network includes a multi-layer convolutional neural network and a fully connected layer, wherein each layer of the multi-layer convolutional neural network includes a convolutional layer, an activation function layer and a down-sampling layer arranged successively; processing the image by using the multi-layer convolutional neural network of the first neural network acquired so as to obtain a target position mask for the image; and labeling the target in the image based on the target position mask.
US11735311B2

A system for classifying a target image with segments having attributes is provided. The system generates a graph for the target image that includes vertices representing segments of the image and edges representing relationships between the connected vertices. For each vertex, the system generates a subgraph that includes the vertex as a home vertex and neighboring vertices representing segments of the target image within a neighborhood of the segment represented by the home vertex. The system applies an autoencoder to each subgraph to generate latent variables to represent the subgraph. The system applies a machine learning algorithm to a feature vector comprising a universal image representation of the target image that is derived from the generated latent variables of the subgraphs to generate a classification for the target image.
US11735305B2

A method for automatically configuring a medical device with user-specific configuration data includes determining, by a first medical device, that the first medical device is being placed into service to provide medical therapy to a patient, wherein the first medical device is a replacement medical device for a second medical device that was previously placed into service to provide medical therapy to the patient in accordance with user-specific configuration data stored on the second medical device, communicating, by the first medical device, data indicative of the first medical device being placed into service, after communicating the data indicative of the first medical device being placed into service, obtaining, by the first medical device, the user-specific configuration data stored on the second medical device, and configuring, by the first medical device, the first medical device to provide therapy in accordance with the obtained user-specific configuration data.
US11735304B2

Embodiments of the inventive technology may relate to a robotic pill dispensing system, whether puck-based or puck-free, configured to avoid delay during the filling of orders and achieve high, perhaps even maximal, order fill rates and associated processing efficiency. Additional embodiments of the inventive technology may relate to, inter alia, a bottle placement site that is different from a bottle pick-up site, a device configured to apply lodged pill clearance forces to counted pill reserve containers; counted pill reserve containers that are large enough to contain pills required by substantially all orders to be handled by a robotic dispensary; a method of dynamically repositioning medication-dedicated pill counters to increase processing speed and a system configured to facilitate the same; a robotic dispensary configured to allow manual operation when a robot is off-line; and a robotic dispensary configured to cover open, filled vials during transport thereof to prevent pill spillage.
US11735303B2

An apparatus and method for determining a composition of a replacement therapy treatment is presented, the apparatus at least a processor and a memory communicatively connected to the processor, the memory containing instructions configuring the at least a processor to receive a user input wherein the user input comprises at least an identifier and a constitutional history of the user, generate a first condition descriptor as a function of the user input, determine a composition of a replacement therapy treatment as a function of the first condition descriptor, wherein the determination comprises training a first machine-learning process using user training data, wherein the user training data correlates user inputs to compositions of the replacement therapy treatment and determining the composition as a function of the user input and the first machine learning process, and output the composition of the replacement therapy treatment as a function of the determination.
US11735301B2

A vaccine candidate is herein described comprised by statistically significant DNA fragments related to Civet SARS, Bat Sars, and BtRs BetaCov, BtRI BetaCov, and Neoromicia resulting in three types of compositions: 1) a composition of statistically significant DNA fragments, 2) a composition of RNA transcripts corresponding to the statistically significant DNA fragments, and 3) a computational reduction composition wherein the DNA fragments are fully or partially subtracted from a base organism, resulting in a synthetic organism which has a high statistical likelihood of problematic functions being partially or fully removed.
US11735289B2

Analysis of the flow of fluxes through the metabolic network of a cell type is useful in gaining knowledge about cellular physiology. Such knowledge can be used in understanding host's interactions with pathogens, drug response etc. However there is dearth of techniques that can incorporate metabolomics data into genome scale metabolic model (GEM) for FBA. A method and system for analyzing metabolic state of a cell at a genome scale by measuring concentrations of a one or more metabolites has been disclosed. The method is utilizing intracellular and/or extracellular metabolite concentrations for constraining reaction fluxes in FBA by incorporating it as part of stoichiometric constraint to metabolic model. The method is used to predict the change in flux flow through all reactions in an organism/cell type under different experimental conditions. The method enables constraining the flow of fluxes through reactions while performing FBA of GEMs using measured metabolite concentrations.
US11735285B1

Various implementations described herein relate to systems and methods for detecting address corruption when using a memory device to store and retrieve data, including but not limited to, reading combined information from a memory device, determining encoded data by de-combining address information from the combined information, and detecting address corruption by decoding the encoded data.
US11735279B2

The present disclosure in the field of memory technology proposes a programmable storage cell, a programmable storage array and a reading and writing method for the programmable storage array. The programmable storage cell includes: a first anti-fuse element connected between a first power terminal and an output terminal, a second anti-fuse element connected between the second power terminal and the output terminal, and a third switch unit connected to the output terminal, a third power terminal and a position signal terminal, where the third switch unit responds to the signal from the position signal terminal so as to connect the third power terminal and the output terminal. The programmable storage cell has a simple structure and a high reading speed.
US11735276B2

Methods, systems, and devices for programming techniques for polarity-based memory cells are described. A method may include writing memory cells to an intermediate state based on receiving a write command. Writing the intermediate state may include applying a first pulse having a first polarity to the memory cell. The method may include isolating a first access line coupled with the memory cell from a voltage source based on applying the first pulse. The method may also include applying a second pulse to a second access line coupled with the memory cell based on isolating the first access line.
US11735275B2

A high voltage switch circuit and a semiconductor memory device having the same are provided. The high voltage switch circuit includes a switching circuit for outputting a high voltage by transmitting one of a plurality of pump voltages to an output node; and a discharge circuit connected between the output node and a terminal of an internal power voltage, the discharge circuit discharging the high voltage to a level of the internal power voltage. The discharge circuit includes a triple well transistor.
US11735266B2

An antifuse-type one time programming memory cell includes a select device, a following device and an antifuse transistor. A first terminal of the select device is connected with a bit line. A second terminal of the select device is connected with a first node. A select terminal of the select device is connected with a word line. A first terminal of the following device is connected with the first node. A second terminal of the following device is connected with a second node. A control terminal of the following device is connected with a following control line. A first drain/source terminal of the antifuse transistor is connected with the second node. A gate terminal of the antifuse transistor is connected with an antifuse control line. A second drain/source terminal of the antifuse transistor is in a floating state.
US11735249B2

Methods, systems, and devices for sensing techniques for differential memory cells are described. A method may include selecting a pair of memory cells that comprise a first memory cell coupled with a first digit line and a second memory cell coupled with a second digit line for a read operation, the pair of memory cells storing one bit of information. The method may further include applying a first voltage to a plate line coupled with the first memory cell and the second memory cell and applying a second voltage to a select line to couple the first digit line and the second digit line with a sense amplifier. The amplifier may sense a logic state of the pair of memory cells based on a difference between a third voltage of the first digit line and a fourth voltage of the second digit line.
US11735243B2

Embodiments of 3D memory devices with a static random-access memory (SRAM) and fabrication methods thereof are disclosed herein. In certain embodiments, the 3D memory device includes a first semiconductor structure and a second semiconductor structure. The first semiconductor structure includes an array of SRAM cells and a first bonding layer, and the second semiconductor structure includes an array of 3D NAND memory strings and a second bonding layer. The first semiconductor structure is attached with the second semiconductor structure through the first bonding layer and the second bonding layer. The array of 3D NAND memory strings and the array of SRAM cells are coupled through a plurality of bonding contacts in the first bonding layer and the second bonding layer and are arranged at opposite sides of the plurality of bonding contacts.
US11735242B2

A magnetic device includes a layer stack comprising a first ferromagnetic layer; a spacer layer on the first ferromagnetic layer; a second ferromagnetic layer on the spacer layer; a dielectric barrier layer on the second ferromagnetic layer; an insertion layer positioned between the second ferromagnetic layer and the dielectric barrier layer; and a fixed layer or an electrode on the dielectric barrier layer. In some examples, a magnetic orientation of the second ferromagnetic layer is switched by a bias voltage across the layer stack without application of an external magnetic field; an antiferromagnetic coupling of the first and second ferromagnetic layers is increased by the bias voltage applying a negative charge to the fixed layer or the electrode, and the antiferromagnetic coupling of the first and second ferromagnetic layers is decreased by the bias voltage applying a positive charge to the fixed layer or the electrode.
US11735238B2

A memory device is provided, the memory device includes multiple cells arranged in a matrix of multiple rows and multiple columns. The memory device further includes multiple bit lines each of which is connected to first cells of the multiple cells arranged in a row of the multiple rows. A voltage control circuit is connectable to a selected bit line of the multiple bit lines and includes a voltage detection circuit that detects an instantaneous supply voltage and a voltage source selection circuit connected to the voltage detection circuit. The voltage source selection circuit selects a voltage source from multiple voltage sources based on the detected instantaneous supply voltage. The voltage source selection circuit includes a switch that connects the selected voltage source to the selected bit line to provide a write voltage.
US11735237B2

In a memory component having a command/address interface, timing interface and data interface, the command/address interface receives a first command/address value from a control component during a first interval and a second command/address value from the control component during a second interval. The timing interface receives a data strobe from the control component during the first interval and a data clock from the control component during the second interval, the data strobe departing from a parked voltage level to commence toggling at a time corresponding to reception of the first command/address value, and the data clock toggling throughout the second interval regardless of second command/address value reception-time. The data interface samples first write data corresponding to the first command/address value at times indicated by toggling of the data strobe, and samples second write data corresponding to the second command/address value at times indicated by toggling of the data clock.
US11735232B2

A memory device includes a printed circuit board having a plurality of conductive layers; memory chips mounted over the printed circuit board, wherein the memory chips comprise at least a first number of memory chips and a second number of memory chips; a first power module mounted over the printed circuit board and for providing a first set of power supplies to the first number of memory chips through the plurality of conductive layers; and a second power module mounted over the printed circuit board and for providing a second set of power supplies to the second number of memory chips through the plurality of conductive layers.
US11735223B2

A storage device comprises, a head assembly, motor(s) configured to actuate the head assembly. The storage device may optionally include tape reel(s) holding tape media for storing data and a casing. The head assembly and its suspension system comprises a support structure, a head housing having an upper attachment bracket and a lower attachment bracket, a first flat spring attached to the upper attachment bracket, a second flat spring attached to the lower attachment bracket, and a head bar attached on an upper side to the first flat spring and attached on a lower side to the second flat spring. The head bar includes at least one read head and at least one write head.
US11735216B2

A magnetic recording medium includes a non-magnetic substrate; a soft magnetic layer; a first seed layer; a second seed layer; an underlayer; and a perpendicular magnetic recording layer. The soft magnetic layer, the first seed layer, the second seed layer, the underlayer and the perpendicular magnetic recording layer are disposed on the non-magnetic substrate in this order. The first seed layer includes MoS2, hexagonal-BN, WS2, WSe2 or graphite. The second seed layer includes AlN having a hexagonal wurtzite type crystal structure. The underlayer includes Ru.
US11735214B2

Systems and methods are disclosed for synchronous writing of a grain patterned medium. The systems and methods can be implemented within a data storage device having a grain patterned medium. Further, a calibration process to determine a count of bits between servo wedges can be implemented in manufacturing, within the data storage device, or both. In some examples, the data storage device, during operation, can utilize the count of bits to perform synchronous writing, determine write errors, or both. Further, the servo wedge of the grain patterned medium may be patterned with a same or similar grain pattern as the data area that follows the servo wedge. Such a data storage device can implement a single clock for reading a servo wedge and writing a data area.
US11735203B2

The audio content (e.g., an audio track, an audio file, an audio signal, etc.) of a content item (e.g., multimedia content, a movie, streaming content, etc.) may be modified to augment and/or include one or more auditory events, such as a sound, a plurality of sounds, a sound effect(s), a voice(s), and/or music.
US11735200B2

The present invention discloses a dual-microphone adaptive filtering algorithm for collecting body sound signals, characterized in that, using at least two microphones, a primary microphone and a secondary microphone, to collect signals; the primary microphone is used to collect noisy body sound signals, and the secondary microphone is used to collect environmental noise; applying a same high-pass filtering to signals collected by the primary microphone and signals collected by the secondary microphone; using a normalized least mean square algorithm on the primary microphone signals and the secondary microphone signals after the high-pass filtering to calculate a weight of the adaptive filter and to calculate an error signal to filter out environmental noise in the primary microphone signals; processing the error signal for a first time by a low-pass filtering to restore the body sound signals, to obtain the body sound signals output by the adaptive filtering algorithm. This algorithm not only may achieve rapid convergence of filter weights, but also avoid signal distortion, and suppress environmental noise interference quickly and reliably.
US11735196B2

Described are an encoder for coding speech-like content and/or general audio content, wherein the encoder is configured to embed, at least in some frames, parameters in a bitstream, which parameters enhance a concealment in case an original frame is lost, corrupted or delayed, and a decoder for decoding speech-like content and/or general audio content, wherein the decoder is configured to use parameters which are sent later in time to enhance a concealment in case an original frame is lost, corrupted or delayed, as well as a method for encoding and a method for decoding.
US11735188B2

A system and method may identify a fraud ring based on call or interaction data by analyzing by a computer processor interaction data including audio recordings to identify clusters of interactions which are suspected of involving fraud each cluster including the same speaker; analyzing by the computer processor the clusters, in combination with metadata associated with the interaction data, to identify fraud rings, each fraud ring describing a plurality of different speakers, each fraud ring defined by a set of speakers and a set of metadata corresponding to interactions including that speaker; and for each fraud ring, creating a relevance value defining the relative relevance of the fraud ring.
US11735179B2

The present disclosure discloses a speech chip and an electronic device. The speech chip includes a first processing module, a second processing module and a third processing module. The first processing module is configured to run an operating system, and to perform data scheduling on modules other than the first processing module in the chip. The second processing module is configured to perform a mutual conversion between speech and text based on a speech model. The third processing module is configured to perform digital signal processing on inputted speech.
US11735175B2

A disclosed method includes monitoring an audio signal energy level while having a noise suppressor deactivated to conserve battery power, buffering the audio signal in response to a detected increase in the audio energy level, activating and running a voice activity detector on the audio signal in response to the detected increase in the audio energy level and activating and running a noise estimator in response to voice being detected in the audio signal by the voice activity detector. The method may further include activating and running the noise suppressor only if the noise estimator determines that noise suppression is required. The method activates and runs a noise type classifier to determine the noise type based on information received from the noise estimator and selects a noise suppressor algorithm, from a group of available noise suppressor algorithms, where the selected noise suppressor algorithm is the most power consumption efficient.
US11735173B2

Determining a language for speech recognition of a spoken utterance received via an automated assistant interface for interacting with an automated assistant. Implementations can enable multilingual interaction with the automated assistant, without necessitating a user explicitly designate a language to be utilized for each interaction. Implementations determine a user profile that corresponds to audio data that captures a spoken utterance, and utilize language(s), and optionally corresponding probabilities, assigned to the user profile in determining a language for speech recognition of the spoken utterance. Some implementations select only a subset of languages, assigned to the user profile, to utilize in speech recognition of a given spoken utterance of the user. Some implementations perform speech recognition in each of multiple languages assigned to the user profile, and utilize criteria to select only one of the speech recognitions as appropriate for generating and providing content that is responsive to the spoken utterance.
US11735162B2

During text-to-speech processing, a speech model creates output audio data, including speech, that corresponds to input text data that includes a representation of the speech. A spectrogram estimator estimates a frequency spectrogram of the speech; the corresponding frequency-spectrogram data is used to condition the speech model. A plurality of acoustic features corresponding to different segments of the input text data, such as phonemes, syllable-level features, and/or word-level features, may be separately encoded into context vectors; the spectrogram estimator uses these separate context vectors to create the frequency spectrogram.
US11735159B2

A voice output device includes a voice output controller configured to determine, when a message reception unit receives a message, whether a start condition to be satisfied when a person intended to receive the message normally listens to voice in the predetermined space is satisfied, and cause a voice output unit to start voice output of the message when the start condition is satisfied and suspend voice output of the message when the start condition is not satisfied. The voice output is not immediately performed in response to a reception of a message but is performed only when the person intended to receive the message normally listens to the message, and the voice output of the message is suspended in other cases.
US11735153B2

An acoustic treatment device for an aircraft turbojet engine nacelle forms an annular ring including several sections, each section having a sound absorption structure, an outer skin and two lateral skins attached to the inner air inlet shroud of such a nacelle by fasteners, and the sections being connected to each other by battens.
US11735146B2

According to an embodiment, an electronic device may include: a display, an optical sensor disposed in a rear surface of the display and overlapping the display, the optical sensor including a light emitting unit including light emitting circuitry and a light receiving unit including light receiving circuitry, a processor operatively connected with the display and the optical sensor, and a memory operatively connected with the processor, wherein the memory may store instructions which, when executed, cause the processor to: obtain position information of a first area corresponding to the light emitting unit of the optical sensor in the display, and based on the light emitting unit of the optical sensor radiating light, output a visual object in the first area and/or an area adjacent to the first area on the display.
US11735140B2

An apparatus includes an acquisition unit configured to acquire a signal that indicates a position of a pixel where a change in luminance has occurred and a time when the change in luminance has occurred, a determination unit configured to determine, on a pixel-by-pixel basis, an evaluation value corresponding to a frequency at which a change in luminance in a predetermined direction has occurred, based on the signal, a generation unit configured to generate an image indicating a direction of the change in luminance at the position of the pixel where the change in luminance has occurred, and a control unit configured to control display of the generated image based on the evaluation value.
US11735126B1

An electronic device such as a watch may include a display and a light sensor located behind the display. The light sensor may be used to measure the color of external objects. During color sampling operations, the display may emit light towards the external object in front of the display while the light sensor gathers color measurements. The display may emit light of different colors and the light sensor may detect an amount of reflected light for each color, which in turn may be used to determine the color of the external object. The control circuitry may use a watch-band-specific algorithm to determine the color of watch bands and may use a clothing-specific algorithm to determine the color of clothing. The control circuitry may display the color on the display so that the face of the watch matches the user's clothing or matches the user's watch band.
US11735123B2

Embodiments of the present disclosure relate to a display device, comprising: a display panel including a light emitting element, a driving transistor configured to provide a driving current to the light emitting element, and a plurality of switching transistors configured to control an operation of the driving transistor; a gate driving circuit configured to supply a plurality of scan signals to the display panel; a data driving circuit configured to supply a plurality of data voltages to the display panel; and a timing controller configured to control the gate driving circuit and the data driving circuit, wherein a bias voltage is supplied to the driving transistor in a first period in which the data voltage is supplied to the display panel at a low speed mode which the display panel is driven at a low speed driving frequency.
US11735121B2

A display apparatus includes a display area and a sub-display area. The display area includes a central display area and a plurality of edge display areas. Each of the plurality of edge display areas extends curved from the central display area. The sub-display area is disposed between adjacent edge display areas. Light is emitted at the sub-display area, and the color of the light emitted at the sub-display area is identical or similar to that of light emitted from a portion of the display area adjacent to the sub-display area.
US11735116B2

A pixel circuit, a method for driving the pixel circuit and a display device including the same are disclosed. The pixel circuit includes a driving element including a first electrode connected to a first power line to which a pixel driving voltage is applied, a gate electrode connected to a first node, and a second electrode connected to a second node; a first switch element including a first electrode connected to a second power line to which a data voltage is applied, a gate electrode to which a first scan pulse is applied, and a second electrode connected to the first node; a second switch element including a first electrode connected to the second power line, a gate electrode to which a second scan pulse is applied, and a second electrode connected to the first node.
US11735114B2

A pixel circuit, a driving method thereof, and a display device. The pixel circuit includes a data write module, a first reset module, a drive transistor, and a light-emitting module. The data write module is configured to apply a constant first voltage signal inputted from a data signal terminal to a first electrode of the drive transistor at a first reset stage; the first reset module is configured to apply a reset voltage signal inputted from a reset signal terminal to a gate of the drive transistor at the first reset stage; and the data write module is configured to apply a data voltage signal inputted from the data signal terminal to the gate of the drive transistor at a data write stage.
US11735110B2

A display device includes a display panel on which gate lines, data lines and subpixels are disposed; a gate driving circuit which drives the gate lines; and a data driving circuit which drives the data lines. Each of the subpixels includes: a light emitting device; a second transistor which has a first node, a second node that is a gate node, and a third node electrically connected to the light emitting device, and drives the light emitting device; a first transistor electrically connected between the third node and the data line; a third transistor electrically connected between the first node and the second node; and a fourth transistor electrically connected between the third node and the light emitting device. The third transistor performs a turn-off operation later than the first transistor, so that a voltage applied to the third node is transmitted to the second node via the first node.
US11735093B2

A slew rate controller includes an amplifier configured to operate with a first driving voltage and a second driving voltage, and generate an output voltage by using an image data voltage inputted at a first time point; an output switch configured to apply the output voltage to an external panel load according to a first control signal at the first time point; a first switch connected between one end of the output switch and the amplifier; and a second switch connected between the other end of the output switch and the amplifier.
US11735089B2

A display device according to an embodiment of the present application comprises a storage configured to store gamut mapping data, a controller configured to, when an image signal is input, convert the input image signal into an output signal based on the gamut mapping data, and a display configured to display an image based on the output signal, wherein the controller changes the gamut mapping data according to the input image signal.
US11735085B1

An output buffer for a source driver of a panel includes an output stage, configured to output an output voltage; an operational transconductance amplifier (OTA), configured to control the output stage to charge or discharge a capacitor of a pixel of the panel; and a detector, coupled between the OTA and the output stage, configured to output an enabling signal to turn on/off the output buffer after the output buffer finishes charging or discharging the capacitor of the pixel of the panel, wherein the enabling signal is determined according to a current value of the output stage.
US11735081B1

An intelligent display assembly includes a display and a microcontroller. The display is mounted to a CNC machine and provided with a light emitting module and a display module opposite to the light emitting module. The microcontroller is electrically connected with the CNC machine and the display, such that the microcontroller receives an operating status signal outputted by the CNC machine, and according to the operating status signal, the microcontroller controls the light emitting module to emit light and controls the display module to display processing information, such as processing time, processing quantity, waiting time, and failure time. This allows operators to grasp the processing information in real time and improve management efficiency.
US11735077B2

The invention relates to a transport container having: a frame structure which encloses a transport chamber, a lateral wall which is connected to the frame structure, an opening device for converting the lateral wall between a closed position, which lies against the frame structure and in which a lateral loading opening of the frame structure is closed by the lateral wall, and an open position, which releases the lateral loading opening, a display device for displaying data on the exterior of the lateral wall, a measuring device for detecting the open position of the lateral wall, and a release device for releasing the display device for displaying data upon detecting the open position of the lateral wall. The invention additionally relates to a method for displaying data on a lateral wall of a transport container.
US11735072B2

A display device is disclosed. The display device includes a display panel configured to be wound around or unwound from a roller installed in a housing, wherein the housing is configured to provide a receiving space for the display panel, a module cover coupled to a rear of the display panel, wherein the module cover is configured to be wound around or unwound from the roller with the display panel, an extension sheet extending from a lower side of the display panel, wherein the extension sheet is configured to be wound from the roller, and at least one shock-absorbing member positioned next to a lower end of the module cover, wherein the at least one shock-absorbing member is disposed at a rear surface of the extension sheet.
US11735068B2

An anatomical model for surgical training is provided. The model includes a first layer simulating a liver and a second layer including a simulated gallbladder. A third layer having an inner surface and an outer surface is provided between the first and second layer. The outer surface of the third layer is adhered to the first layer at location around the simulated gallbladder and the simulated gallbladder is adhered to the inner surface of the third layer. A fourth layer is provided that overlays both the second layer and the simulated gallbladder. A frame is embedded within the first layer and is connectable to a support. The model provides a substantially upright projection of a simulated gallbladder and liver in a retracted orientation ideally suited for practicing laparoscopic cholecystectomy when inserted inside a simulated insufflated cavity of laparoscopic trainer.
US11735066B2

A test bench assembly for simulating cardiac surgery includes a passive heart having at least one pair of cardiac chambers with an atrial chamber and a ventricular chamber. A reservoir is adapted to house working fluid. A pressure generator fluidically connects both to the ventricular chamber of the passive heart and to the reservoir. A pressure regulation device provides working fluid in input to the atrial chamber with preload pressure, and working fluid in output from the ventricular chamber with afterload pressure. The pressure regulation device fluidically connects both to the atrial chamber of the passive heart and to the ventricular chamber of the passive heart. The pressure regulation device has a single compliant element for each pair of cardiac chambers, which provides working fluid with both preload, and afterload pressures.
US11735053B2

A method for controlling traffic by a traffic control system includes transmitting, to a first traffic control vehicle, a first message requesting the first traffic control vehicle to autonomously navigate to a location corresponding to a traffic incident. The method also includes monitoring a location of the first traffic control vehicle based on receiving location information from the first traffic control vehicle. The method also includes transmitting, to the first traffic control vehicle, first information to be displayed via a first notification device integrated with the first traffic control vehicle based on the location information corresponding to the location of the traffic incident. The method still further includes transmitting, to the first traffic control vehicle after a period of time, a request to navigate away from the location of the traffic incident.
US11735050B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for implementing an accident reporter are disclosed. In one aspect, a method includes the actions of receiving data that reflects characteristics of a vehicle. The actions further include, based on the data, determining that the vehicle has been in an accident. The actions further include, based on determining that the vehicle has been in an accident and based on the data that reflects the characteristics of the vehicle, determining a classification of the accident. The actions further include determining additional data to collect and a recipient of a description of the accident. The actions further include receiving the additional data. The actions further include generating the description of the accident based on the data that reflects the characteristics of a vehicle and the additional data. The actions further include providing, for output, the description of the accident.
US11735045B2

Systems and methods are directed to allocating unused or otherwise under-utilized computing resources of autonomous vehicles. In one example, a computer-implemented method obtaining, by a computing system, data describing a computational status of each autonomous vehicle of one or more autonomous vehicles describing a current or forecasted computational load. The method includes determining, by the computing system, an amount of excess computational capacity of each autonomous vehicle of the one or more autonomous vehicles, the amount of excess computational capacity for each autonomous vehicle of the one or more autonomous vehicles based at least in part on the computational status of the autonomous vehicle and a total computational capacity of the autonomous vehicle. The method includes allocating, by the computing system, at least a portion of the amount of excess computational capacity of each autonomous vehicle to processing operations associated with participation in a distributed ledger.
US11735042B1

An apparatus including a warning device fixed to a sign, which is configured to be fixed at a location adjacent a road; and wherein the warning device includes: a computer processor; a computer memory; and an audio speaker; and wherein the computer processor is configured to cause a first audio warning to be played on the audio speaker in response to computer programming stored in the computer memory when there is a dangerous road condition. The dangerous road condition may include that a drawbridge has been raised, that there is an icy condition on a bridge, that a vehicle is about to go the wrong way down a one-way street, a sharp curved road, an area is prone to falling rocks, a dangerous intersection, and/or a speed hump. The apparatus may further include a dashboard apparatus, fixed to a vehicle; configured to communicate with the warning device.
US11735036B2

Transport Protocol Experts Group (TPEG) traffic messages, which include traffic information associated with road vector definitions, are generated. Bounding area definitions associating the road vector definitions with bounding areas are obtained, and automatically adjusted based on a time associated with broadcast of the TPEG traffic messages. TPEG traffic messages to be included in a TPEG frame associated with a particular bounding area are selected based on the bounding area definitions. The TPEG frame is generated, and transmitted for broadcast in the particular bounding area.
US11735033B2

A system may enable control of one or more output devices in response to input received from one or more activators. An activator may transmit a unique identifier that corresponds to the output device to be controlled. A control unit may receive the unique identifier and enable control of the output device in response to one or more additional inputs. The inputs may be provided by a flex sensor or capacitive touch sensor of a wearable device. In response to the additional inputs, control may be permitted for the output device identified by the unique identifier of the activator.
US11735032B2

A universal controlling device is provided with one or more buttons which, when activated in a set up mode, serves to initiate a rapid configuration of the universal controlling device to adapt the universal controlling device to transmit communications to an intended target appliance.
US11735022B2

The present invention includes a healthcare system for capturing and maintaining patient healthcare records and employing information in the records to proactively alert hospital workers to a condition that places patient health at risk.
US11735017B2

Various aspects of the disclosure relate to monitoring a physical location to determine and/or predict anomalous activities. One or more machine learning algorithms may be used to analyze inputs from one or more sensors, cameras, audio recording equipment, and/or any other types of sensors to detect anomalous measurements/patterns. Notifications may be sent one or more devices in a network based on the detection.
US11735015B2

Systems, devices, and operating methods thereof provide for operation of a display based on detection of defined electrical conditions. Measurement devices may include a housing sized and shaped to be held in a hand, a set of sensor devices for sensing a set of electrical characteristics, processing circuitry, and a display supported by the housing. The measurement devices receive measurements obtained from the sensor devices and determine whether the measurements satisfy criteria for detecting defined electrical conditions in an element under test. Operating modes of the display having different corresponding illumination characteristics are controlled as a result of determining the presence of defined electrical conditions in the element under test.
US11735000B2

System and methods for providing a digital touch screen button display device incorporating player tracking and player rewards capabilities for an electronic gaming machine including game play functionality via a touch screen LCD thereby eliminating the need for a separate player tracking module. The digital button display device is located on the button deck of an electronic gaming machine and cooperates and communicates with the slot accounting system of a casino and may contain one or more interoperability modules to cooperate and communicate with differing slot accounting systems.
US11734996B2

A system and method for downloading production order specific software and/or firmware to an electronic gaming machine device is disclosed.
US11734995B2

A table game management system according to the present invention includes a camera that images a game token placed on a game table, and a management control device that grasps a type of the game token placed on the game table based on a color of a side face of the game token imaged by the camera.
US11734993B2

An electronic gaming machine includes a game controller, a player interface, and a display. The game controller causes the display to display a bonus array having visual elements. Each of the visual elements is uniquely associated with one of a plurality of symbol display positions, at least one visual element indicating a bonus award. The game controller selects a symbol for display at each of the symbol display positions, determines whether at least one of the symbol display positions contains a trigger symbol, and upon determining that the at least one of the symbol display positions contains a trigger symbol, determines a modification to a base prize based at least in part on a visual element associated with the symbol display position containing the trigger symbol.
US11734992B2

A gaming machine is described herein. The gaming machine includes a game control unit programmed to display computer-generated graphics including a plurality of virtual reels. The game control unit displays a game screen including a grid having a plurality of cells arranged in a plurality of rows and columns, and displays the plurality of virtual reels in the grid. Each of the plurality of virtual reels includes a plurality of credit prize symbols. The game control unit spins and stops each of the plurality of virtual reels to display an outcome of the game. The game control unit detects an appearance of a special symbol in the outcome of the game, responsively determines a credit prize amount based on the credit prize symbols appearing in the outcome of the game, and provides the determined credit prize amount to a player.
US11734977B2

A system and method are disclosed for identifying a user based on the classification of user movement data. An identity verification system receives a sequence of motion data from a mobile device operated by a target user. From the sequences of motion data, the identity verification system identifies a plurality of identity blocks representing different movements performed by the target user and encodes a set of signature sequences from each identity block into a feature vector. Each feature vector is input to a confidence model to output an identity confidence value for an identity block. An identity confidence value describes a confidence that the movement in the identity block was performed by the target user. The identity confidence value is compared to an operational security threshold and if identity confidence value is above the threshold, the target user is granted access to an operational context.
US11734974B2

A safe for the storage of a valuable, such as a firearm. The safe has an imaging system that is used to scan a portion of a human in the near infrared spectrum to image blood vessels and determine if the image matches a stored image and thereafter effect unlocking of the safe. A manual override lock system is provided to manually effect unlocking of the safe.
US11734970B2

An embodiment device for recording an image for a vehicle includes an image acquisition device configured to acquire an image of a region around the vehicle, a sensor device configured to acquire a bio-signal of a driver, the bio-signal comprising a signal carrying information selected from the group consisting of a heart rate, an electrocardiogram, a galvanic skin response (GSR), a body temperature, a voice, a facial expression, and a stress level and combinations thereof, and a controller configured to determine sections of the acquired image to be stored in a non-volatile memory based on the bio-signal and store images of the sections in the non-volatile memory.
US11734967B2

An information processing device includes: an accident/near miss detecting unit that detects a first vehicle of a plurality of vehicles based on vehicle information acquired by each of the vehicles and including position information and date-and-time information corresponding to time when the vehicle information is acquired by the vehicles, the first vehicle being involved in a near miss or accident; a surrounding vehicle extracting unit that extracts surrounding vehicles of the vehicles and the date-and-time information corresponding to the position information, the surrounding vehicles being positioned at an area surrounding the first vehicle at time of the near miss or accident; and an object vehicle specifying unit that specifies a second vehicle of the surrounding vehicles, the second vehicle being a vehicle in which an inadequate driving operation causing the near miss or accident of the first vehicle is performed.
US11734966B1

Disclosed are systems, methods, and non-transitory computer-readable media for achieving functional safety compliance using a recursive system layer analysis. A functional safety system uses a recursive method to sequentially analyze each layer of a target environment from a bottom layer (e.g., IP layer) to a top layer (e.g., system layer). If a target diagnostic coverage level is not achieved at a given layer, the functional safety system attempts to achieve the target diagnostic coverage level at the next layer based on the residual faults from the lower layer. At the top layer, the functional safety system may apply the context of the target environment to reduce the scope of the coverage analysis based on the given application. The functional safety system may also use the context of the target environment to the reanalyze the lower layers as needed.
US11734956B2

The present invention provides a processing circuit applied to a face recognition system, which includes a characteristic value calculation module, a determination circuit and a threshold value calculation module. The characteristic value calculation module is used to receive an image and process the image to generate a specific characteristic value; when the face recognition system operates in a face recognition phase, the determination circuit calculates multiple differences each between the specific characteristic value and one of multiple reference characteristic values, and determines whether at least one of the multiple differences is lower than a threshold value to generate a determination result; and when the face recognition system operates in a face registration phase, the threshold value calculation module determines a new threshold value according to differences between the specific characteristic value and the multiple reference values, for updating the threshold value used by the determination circuit.
US11734946B2

A fingerprint sensing module includes a first substrate, an active device, a photosensitive element layer, a collimation structure layer, a second substrate, a plurality of micro lenses, and a spacer pattern. The active device is disposed on the first substrate. The photosensitive element layer is disposed on the first substrate and is electrically connected to the active device. The collimation structure layer is disposed on the photosensitive element layer. The second substrate is disposed on the collimation structure layer. The micro lenses are disposed on a surface of the collimation structure layer facing away from the photosensitive element layer, and overlap the photosensitive element layer. The micro lenses are divided into a plurality of microlens groups, and the microlens groups are respectively located in a plurality of sensing pixel areas of the fingerprint sensing module. The spacer pattern extends between the microlens groups.
US11734945B2

A display module includes: a liquid crystal module, a cover plate, and a texture recognition unit. The texture recognition unit includes a first light source and a texture sensing module. The first light source is located at a side of the cover plate proximate to the liquid crystal module, and is configured to emit invisible light. The texture sensing module is located at a side of the liquid crystal module facing away from the cover plate. A light wavelength range of light allowed to pass through the cover plate and the liquid crystal module includes a light wavelength range of the invisible light. The texture sensing module is configured to collect reflected light after the invisible light is irradiated to a target object, so as to identify a texture of the target object.
US11734941B2

Systems and methods are described for dynamically adjusting an amount of retrieved recognition data based on the needs of a show, experience, or other event where participants are recognized. The retrieved recognition data may be deleted once it is no longer needed for the event. Recognition data retrieval is limited to just what is needed for the particular task, minimizing the uniqueness of any retrieved recognition data to respect participant privacy while providing an enhanced participant experience through recognition.
US11734940B2

A display apparatus includes circuitry to receive an input of a plurality of strokes representing a drawing that includes one or more drawing components including a first drawing component. The plurality of strokes is divided under a predetermined condition to obtain the one or more drawing components. The circuitry stores, in a memory, each of the one or more drawing components and drawing data representing the drawing. The circuitry displays, on a display screen, in response to receiving an input of a second drawing component, the drawing represented by the drawing data based on the first drawing component and the second drawing component.
US11734937B1

Techniques for creating a text classifier machine learning (ML) model are described. According to some embodiments, a language processing service finetunes a language ML model on unlabeled documents of a user, and then trains that finetuned language ML model on labeled documents of the user to be a text classifier that is customized for that user’s domain, e.g., the user’s documents. Additionally, the finetuned language ML model may be trained on labeled documents of the user, for prediction objectives for unlabeled data, before being trained as the text classifier.
US11734936B2

A digital microscope system comprises an imaging device configured to generate digital image data representing a target region of an object, the target region being determined by a changeable setting of the imaging device; and a controller configured to generate monitor image data corresponding to the digital image data generated in accordance with the setting, the monitor image data being configured to be displayed as a monitor image; wherein the controller is further configured to change the setting in response to a user input; and wherein the controller is further configured to compensate for a delay in updating the monitor image data in accordance with the changed setting by storing the digital image data generated in accordance with the unchanged setting in response to the user input and generating simulation monitor image data by performing digital image processing on the stored digital image data taking into account the changed setting, the simulation monitor image data being configured to be displayed as a simulation monitor image during the delay.
US11734927B2

In general, embodiments of the present invention provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for performing mixed reality processing using at least one of depth-based partitioning of a point cloud capture data object, object-based partitioning of a point cloud capture data object, mapping a partitioned point cloud capture data object to detected objects of a three-dimensional scan data object, performing noise filtering on point cloud capture data objects based at least in part on geometric inferences from three-dimensional scan data objects, and performing geometrically-aware object detection using point cloud capture data objects based at least in part on geometric inferences from three-dimensional scan data objects.
US11734923B2

A method for automatically identifying global solar photovoltaic (PV) panels based on a cloud platform by using remote sensing. Optical images in a study area for a whole specific year are collected based on the cloud platform, and preprocessing is performed to obtain a surface reflectance image. Seven time-series images are derived and constructed based on spectral features of a solar PV panel: a solar PV panel index image, a water index image, a vegetation index image, a difference image between a first shortwave infrared band and a second shortwave infrared band, a difference image between the first shortwave infrared band and a near-infrared band, a blue band image, and a first shortwave infrared band image. Data in the seven time-series images are synthesized and reconstructed to obtain input data required by a model. A remote sensing theoretical model for automatically identifying a solar PV panel is constructed.
US11734922B2

Methods of identifying a subterranean tunnel using digital imaging that may include: obtaining data of a propagating wavefield through a propagating volume that includes a portion of the earth's subsurface; obtaining a reference digital image of the propagating volume; selecting a holographic computational method of wavefield imaging; selecting a wavefield based on one or more parameters; calculating a sampling ratio by dividing a number of data samples in the data subset by a number of image samples in the data subset; decimating the data subset; generating a new digital image based on the selected holographic computational method of imaging, the decimated data subset, and parameters corresponding to the data subset; determining a quantitative difference measure between the reference digital image and the new digital image, and image quality; and identifying the subterranean tunnel.
US11734921B2

Methods of providing digital images of living tissue that may include: obtaining data of a propagating wavefield through living tissue; obtaining a reference digital image of the living tissue; selecting a holographic computational method of wavefield imaging; selecting a wavefield based on one or more parameters; calculating a sampling ratio by dividing a number of data samples in the data subset by a number of image samples in the data subset; decimating the data subset; generating a new digital image based on the selected holographic computational method of imaging, the decimated data subset, and parameters corresponding to the data subset; and determining a quantitative difference measure between the reference digital image and the new digital image based on the changing of one or more parameters selected from the group consisting of field sampling, imaging sampling, and image quality.
US11734903B2

A CAD model comprises an entity comprising an input face comprising a normal direction. Via user input, a translation for the input face in the normal direction is obtained. From the CAD model, a list of faces parallel to the input face is automatically determined. From the list of faces, a snap face comprising a distance along the normal direction to the current position of the input face which is minimal over the list of faces is automatically selected, without acquiring the snap face via user input. Via a visualization means, a snap plane comprising the snap face, and either a coplanar alignment of the input face in the snap plane; or a distance indicator from the input face to the snap plane, are automatically displayed. Via user input, validation of the coplanar alignment or a numerical value for the distance indicator is obtained. The entity is automatically adjusted accordingly.
US11734899B2

Disclosed herein are various embodiments for a headset-based interface and menu system. An embodiment operates by determining a first position of a headset, configured to display and enable interactions with an interface of a computing system, is less than a threshold. A second position of the headset is detected and it is determined that the second position of the headset is greater than the threshold. Responsive to the determining that the second position of the headset is greater than the threshold, a menu is provided for display in the interface visible via the headset overlaying the interface.
US11734877B2

Provided is an image restoration method of restoring an image obtained through an array camera, the image restoration method including obtaining a plurality of images through lens elements included in the array camera, obtaining a global parameter of the plurality of images, generating first processed images by transforming a viewpoint of each of the plurality of images based on the obtained global parameter, obtaining a local parameter for each pixel corresponding to each of the first processed images, generating second processed images by transforming the first processed images based on the obtained local parameter, and generating a synthesized image of a target viewpoint based on synthesizing the second processed images.
US11734874B2

An airframe maintenance-inspection system includes imaging devices, a transmitter, and a display device. The imaging devices are to be disposed in an aircraft and are configured to respectively capture images of a maintenance-inspection target during a flight of the aircraft. The transmitter is configured to transmit the plurality of images captured by the imaging devices. The display device is configured to display a shape of the maintenance-inspection target in a three-dimensionally viewable state based on the images transmitted by the transmitter.
US11734867B2

Techniques for alerting a user, who is immersed in a virtual reality environment, to physical obstacles in their physical environment are disclosed.
US11734864B2

Using approximated bin intervals to label the histograms provides clarity and allows for the histogram to be more intuitively understood. A dataset may comprise a plurality of records having a plurality of features including one or more continuous features. A selection of a continuous feature may be obtained. A bin width based on a number of bins and feature statistics of the continuous feature may be determined. An approximated bin interval range is determined by applying a bin mask based on the bin width to the feature statistics. An approximated bin width is determined based on the number of bins and the approximated bin interval range. Approximated bin intervals for the histogram are determined based on the approximated bin width. A histogram is generated having bins with intervals based the approximated bin intervals.
US11734861B2

A floorplan modelling method and system. The floorplan modelling method includes receiving 2D images of each corner of an interior space from a camera, generating a corresponding camera position and camera orientation in a 3D coordinate system in the interior space for each 2D image, generating a depth map for each 2D image to estimate depth for each pixel, generating a corresponding edge map for each 2D image, and generating a 3D point cloud for each 2D image using the corresponding depth map and parameters of the camera. The floorplan modelling method includes transforming the 3D point clouds with the corresponding edge map into a 2D space in the 3D coordinate system of the camera, regularizing the 3D point clouds into 2D boundary lines, and generating a 2D plan of the interior space from the boundary lines.
US11734853B1

An antenna board alignment method includes following steps: A microprocessor finds a central positioning point on an antenna board to locate a positioning rectangle. The microprocessor finds four inner positioning points on the positioning rectangle to locate the antenna board. The microprocessor finds a plurality of outer positioning points at a plurality of edge locations on the antenna board to locate at least one edge of the antenna board.
US11734852B2

An operating method of a slope estimating apparatus is provided. The operating method of the slope estimating apparatus including at least one camera includes obtaining a forward image through the at least one camera, detecting a lane included in the forward image, dividing the forward image into a plurality of smaller regions in a horizontal direction, identifying a plurality of lane segments included in each of the plurality of smaller regions, obtaining a plurality of coordinate values forming each of the plurality of lane segments, and obtaining a pitch angle of each of the plurality of smaller regions based on the obtained plurality of coordinate values.
US11734849B2

Patient biographic data may be estimated by receiving patient image data, applying the patient image data to a machine learned model, the machine learned model trained on second patient data and trained to map the second patient data to associated biographic data using machine learned features, generating the patient biographic data based on the applying and the machine learned features, and outputting the patient biographic data. The patient biographic data may include a patient weight, a patient height, a patient gender, and a patient age.
US11734848B2

A navigation system for a host vehicle may include a processor programmed to: receive from a center camera onboard the host vehicle a captured center image including a representation of at least a portion of an environment of the host vehicle, receive from a left surround camera onboard the host vehicle a captured left surround image including a representation of at least a portion of the environment of the host vehicle, and receive from a right surround camera onboard the host vehicle a captured right surround image including a representation of at least a portion of the environment of the host vehicle; provide the center image, the left surround image, and the right surround image to an analysis module configured to generate an output relative to the at least one captured center image; and cause a navigational action by the host vehicle based on the generated output.
US11734846B2

An electronic device tracks its motion in an environment while building a three-dimensional visual representation of the environment that is used to correct drift in the tracked motion. A motion tracking module estimates poses of the electronic device based on feature descriptors corresponding to the visual appearance of spatial features of objects in the environment. A mapping module builds a three-dimensional visual representation of the environment based on a stored plurality of maps, and feature descriptors and estimated device poses received from the motion tracking module. The mapping module provides the three-dimensional visual representation of the environment to a localization module, which identifies correspondences between stored and observed feature descriptors. The localization module performs a loop closure by minimizing the discrepancies between matching feature descriptors to compute a localized pose. The localized pose corrects drift in the estimated pose generated by the motion tracking module.
US11734843B2

An object texture measurement device includes a visual detection unit that detects a visual texture of an object, a tactile detection unit that detects a tactile texture of the object, and an acquisition unit that acquires a detection result of each of the visual detection unit and the tactile detection unit while relatively moving each of the visual detection unit and the tactile detection unit with respect to the object.
US11734839B2

A method and apparatus for removing breathing motion artifacts in imaging CT scans is disclosed. The method acquires raw imaging data from a CT scanner, and processes the raw CT imaging data by removing motion-induced artifacts via a motion model. Processing the imaging data may be achieved by initially estimating a 3D image to provide an estimate of raw sinogram image data, comparing the estimate to an actual CT sinogram, determining a difference between the sinograms, and iteratively reconstructing the 3D image by using the difference to alter the 3D image until the sinograms agree, wherein the 3D image moves according to the motion model.
US11734832B1

Techniques for determining predictions on a top-down representation of an environment based on object movement are discussed herein. Sensors of a first vehicle (such as an autonomous vehicle) may capture sensor data of an environment, which may include object(s) separate from the first vehicle (e.g., a vehicle, a pedestrian, a bicycle). A multi-channel image representing a top-down view of the object(s) and the environment may be generated based in part on the sensor data. Environmental data (object extents, velocities, lane positions, crosswalks, etc.) may also be encoded in the image. Multiple images may be generated representing the environment over time and input into a prediction system configured to output a trajectory template (e.g., general intent for future movement) and a predicted trajectory (e.g., more accurate predicted movement) associated with each object. The prediction system may include a machine learned model configured to output the trajectory template(s) and the predicted trajector(ies).
US11734827B2

Systems and methods for user guided iterative frame and scene segmentation are disclosed herein. The systems and methods can rely on overtraining a segmentation network on a frame. A disclosed method includes selecting a frame from a scene and generating a frame segmentation using the frame and a segmentation network. The method also includes displaying the frame and frame segmentation overlain on the frame, receiving a correction input on the frame, and training the segmentation network using the correction input. The method includes overtraining the segmentation network for the scene by iterating the above steps on the same frame or a series of frames from the scene.
US11734822B2

In variants, a method for automated gamete selection can include: sampling a video of a scene having a plurality of gametes, tracking each gamete across successive images, and determining attribute values for a gamete, and selecting the gamete. The attribute values can be determined using a model trained to predict the attribute values for the gamete based on a video.
US11734807B2

An image generating device for obtaining an image of an object, comprising: a control module configured to generate a first signal having a first frequency component and a first phase component for a first axis direction, and a second signal having a second frequency component and a second phase component for a second axis direction, an emitting unit configured to emit light to the object using the first signal and the second signal; and a light receiving unit configured to obtain light receiving signal based on returned light from the object.
US11734805B2

The present disclosure relates to systems, methods, and non-transitory computer readable media that utilize context-aware sensors and multi-dimensional gesture inputs across a digital image to generate enhanced digital images. In particular, the disclosed systems can provide a dynamic sensor over a digital image within a digital enhancement user interface (e.g., a user interface without visual elements for modifying parameter values). In response to selection of a sensor location, the disclosed systems can determine one or more digital image features at the sensor location. Based on these features, the disclosed systems can select and map parameters to movement directions. Moreover, the disclosed systems can identify a user input gesture comprising movements in one or more directions across the digital image. Based on the movements and the one or more features at the sensor location, the disclosed systems can modify parameter values and generate an enhanced digital image.
US11734801B2

Examples are provided that relate to processing depth camera data over a distributed computing system, where phase unwrapping is performed prior to denoising. One example provides a time-of-flight camera comprising a time-of-flight depth image sensor, a logic machine, a communication subsystem, and a storage machine holding instructions executable by the logic machine to process time-of-flight image data acquired by the time-of-flight depth image sensor by, prior to denoising, performing phase unwrapping pixel-wise on the time-of-flight image data to obtain coarse depth image data comprising depth values; and send the coarse depth image data and active brightness image data to a remote computing system via the communication subsystem for denoising.
US11734800B2

A method for processing an image by using a neural network is provided. The method includes obtaining a target image; and obtaining a restored image corresponding to the target image by using the neural network, the neural network including a plurality of residual blocks connected sequentially. The obtaining the restored image includes obtaining the restored image by performing, in each residual block of the plurality of residual blocks, image processing on an input image, which is input from a previous residual block, on different scales, and providing results of the image processing performed on the different scales to a subsequent residual block.
US11734798B2

Techniques related to generating a fine super resolution image from a low resolution image including a person wearing a predetermined uniform are discussed. Such techniques include applying a pretrained convolutional neural network to a stacked image including image channels from a coarse super resolution image, label data corresponding to the coarse super resolution image from available labels relevant to the uniform, and pose data corresponding to the person to determine the fine super resolution image.
US11734796B2

Methods and apparatus for shared image processing among multiple devices. In one embodiment, an exemplary action camera performs a partial multiband blend. Even though the action camera may not have resources to handle the multiband blend of the entire action camera's footage, it can do a significant portion. The partially blended content can be used in ready-to-share applications, or completely blended by another device.
US11734795B2

A processing device and method for a panoramic image includes converting the panoramic image to a cubemap format; under the cubemap format, calculating a depth information image of the panoramic image, and performing a seamless processing on the depth information image. The format of the depth information image is converted to the original format from the cubemap format to obtain the depth information image corresponding to the panoramic image.
US11734793B2

An optical apparatus captures images of a wide-angle scene with a single camera having a continuous panomorph zoom distortion profile. When combined with a processing unit, the hybrid zoom system creates an output image with constant resolution while allowing continuous adjustment in the magnification and field of view of the image without interpolation like a digital zoom system or without any moving parts like an optical zoom system.
Patent Agency Ranking