一种电力内外网交互中的敏感图像识别方法
摘要:
本发明提供一种电力内外网交互中的敏感图像识别方法,包括:1,在电力内网系统中收集样本图像,形成样本图像集,采用人工标注的方式,对样本图像进行敏感性和非敏感性标注;2,选取样本图像的特征项;3,根据选取的特征项提取样本图像集的特征数据集;4,采用机器学习方法,根据样本图像集的特征数据集和对应的敏感性或非敏感性的标注,训练得到分类模型;5,基于分类模型进行敏感图像识别,当误判率小于设置的误判阀值时,判断当前分类模型符合预期目标,训练结束;当误判率大于等于该误判阀值时,重新选取样本图像的特征项后,执行3。本发明提供的一种方法,基于机器学习法来识别敏感图像,在有限样本的情况下能够得到较为优秀的分类模型。
公开/授权文献
0/0