一种基于卷积神经网络的卫星云量计算方法
Abstract:
本发明公开了一种基于卷积神经网络的为卫星云量计算方法,先建立包含6000~8000训练样本的卫星云图训练样本,手动在卫星云图中标注出各2000~3000样本的厚云,薄云和晴空云图块,以此作为卷积神经网络的训练样本;再将训练样本和卫星云图进行预处理作为卷积神经网络的数据输入,然后进行卷积神经网络检测,以此检测云图中各厚云,薄云和晴空区域所在位置;最后根据云图中厚云、薄云和晴空的位置,分别计算其灰度值,根据其灰度值来进行卫星云图的云量计算。本发明可以把卫星云图图像直接作为CNN的输入,而且将特征提取功能融入神经网络,隐式的对图像的特征进行提取,比现有技术更加方便和精确,具有重要的应用价值。
Public/Granted literature
Patent Agency Ranking
0/0