一种基于特征选择改进的LR-Bagging算法
Abstract:
本发明公开了一种基于特征选择改进的LR-Bagging算法,包括以下步骤:首先从原始数据中确定初始数据集,要求自变量与因变量的相关程度不能过低;其次,对初始数据集中的离散型自变量进行WEO编码;然后利用随机抽样获得一定数目的记录和特征字段组成训练例,将训练例进行LR((LogisticRegression)模型训练并做系数的正态显著性检验,若不显著,则剔除,反之,加入组合模型。进行循环迭代,直到组合模型较优。最后,则可以采用较优组合模型做预测与分群。该算法可提升分类结果的多样性,变量信息的提取度与预测结果的准确率,也能有效减少基LR模型由于变量过多而导致多重共线与“过拟合”的可能性。
Patent Agency Ranking
0/0