基于模糊边界分片的深度动作图人体行为识别方法
摘要:
本发明公开了一种基于模糊边界分片的深度动作图人体行为识别方法。模型训练方法包括以下步骤:将视频深度图序列分片并根据模糊参数α确定分片的模糊边界;对于每一个分片后的子序列分别计算它们主视图、左视图和俯视图的深度动作图DMM;利用插值法将这些深度动作图转换为固定的尺寸并归一化;将归一化后的每个视频序列子序列的深度动作图DMM串联,获得该视频序列的特征向量;采用概率协作表示分类器R‑ProCRC对特征进行分类,最终实现人体行为识别。本发明公开的人体行为识别方法,有效捕获了时域特征的变化规律,增强了行为特征对时域差异的抗干扰能力,能够实现对人体行为的鲁棒识别。
0/0