一种多变量水质参数时序数据异常事件检测方法
摘要:
本发明公开了一种多变量水质参数时序数据异常事件检测方法:首先,输入多个水质参数建模,训练和构造数据驱动的预测模型(BP模型),分析供水管网中的多变量水质时序数据,并对模型进行评估;然后,通过BP模型预测获得水质数据的预测值,比较当前状态的实测值和利用预测模型得到的预测值进行误差评估和分类分析,确定单变量参数异常事件;基于误差统计结果进行分类,通过序贯更新贝叶斯更新确定单变量水质参数的事件概率,进行多变量融合决策,将来自多个水质监测指标的信息融合,提供统一的决策结果,确定供水管网在具体节点处是否异常事件发生。
0/0