参数学习有限时间收敛的高超声速飞行器控制方法
摘要:
本发明公开了一种参数学习有限时间收敛的高超声速飞行器控制方法,用于解决现有高超声速飞行器控制方法实用性差的技术问题。技术方案是通过构造一阶滤波器与辅助信号获取建模误差信息,结合跟踪误差与辅助信号设计神经网络自适应律,针对高超声速飞行器模型中的未知非线性函数估计设计了RBF神经网络方法,将有限时间学习的思想引入神经网络权重更新律设计中,相比传统的神经网络方法,本发明通过构造一阶滤波器与辅助信号将建模误差信息引入权重更新律,能保证参数学习误差有限时间收敛,从而保证学习的快速性。由于采用神经网络学习对不确定性进行估计,无需进行模型线性参数化表达,可实现不确定高超声速飞行器控制,便于实际工程应用。
0/0