基于平行估计复合学习的MEMS陀螺仪快速启动方法
摘要:
本发明公开了一种基于平行估计复合学习的MEMS陀螺仪快速启动方法,用于解决现有MEMS陀螺仪模态控制方法实用性差的技术问题。技术方案是首先根据平行估计模型和动力学模型构建神经网络预测误差,结合跟踪误差,设计神经网络权值的复合自适应律,修正神经网络的权重系数,实现未知动力学的有效动态估计;同时依据滑模超曲面和双指数趋近律设计滑模控制器,实现未知动力学的前馈补偿,使检测质量块振动误差快速收敛,进而满足陀螺快速启动的需求。本发明通过设计神经网络权值的复合自适应律,修正神经网络的权重系数,引入滑模超曲面和双指数趋近律设计的滑模控制器,使检测质量块振动误差快速收敛,进而满足陀螺快速启动的需求,实用性好。
0/0