一种基于结构递归神经网络的海上油气平台检测方法
摘要:
本发明公开了一种基于结构递归神经网络的海上油气平台检测方法,具体包含如下步骤;根据时空图像序列化结构特性,建立海上目标的结构递归神经网络模型;对建立的结构递归神经网络模型进行参数调优,进而建立海上目标的高阶时空特性模型;根据海上目标的高阶时空特性模型获取海上目标的高阶时空特性;根据海上目标的高阶时空特性构建双向循环卷积层,建立融合前后时相特征的双向循环卷积神经网络;通过双向循环卷积神经网络的并行化调优,实现单时相下海上运动目标的准确检测,深度学习可以获得目标特征能力更强,充分利用目标的时空特征,可以检测出复杂背景干扰下的目标,且算法通用性较强。
0/0