一种基于改进的直觉模糊C均值聚类的图像分割方法
摘要:
本发明是一种基于改进的直觉模糊C均值聚类的图像分割方法,属于图像分割领域。该方法首先提出一个改进的非隶属度函数用来生成直觉模糊集,并提出一种基于灰度特征的方法来确定初始聚类中心,突出了直觉模糊集中不确定性的作用并提高了对噪声的鲁棒性。其次利用改进的非线性函数将数据映射到核空间,以便更精确地度量数据点与聚类中心之间的距离。然后引入局部空间‑灰度信息,同时考虑隶属度、灰度特征和空间位置信息。最后改进目标函数中的直觉模糊熵,并兼顾直觉模糊集的模糊性与直觉性。本发明可有效克服图像中噪声和模糊对算法的影响,提高算法的分割性能、像素聚类性能及鲁棒性,适用于各种不同类型的灰度图像,可获得更精确的分割结果。
0/0