一种基于BP神经网络的橡胶减振器性能预测及选型方法
摘要:
本发明公开了一种基于BP神经网络的橡胶减振器性能预测及选型方法,通过振动试验得到橡胶减振器试件的共振频率和减振效率;以振动试验得到的试验数据为基础,以橡胶减振器的几何特征和邵氏硬度作为BP神经网络的输入,以橡胶减振器的共振频率或者减振效率作为BP神经网络的输出,训练神经网络,得到橡胶减振器的物理参量与减振性能的映射关系;利用神经网络模型,对大量未知减振器进行减振器性能预测,然后对物理变量和减振性能数据进行管理,从减振性能出发选出合适的减振器对应的物理参量,完成选型。本发明通过减振器的物理特征变量来预测减振器性能参数,只需根据设计振动量从数据库中选出符合要求的减振器;具有可推广性且选型预测效率高。
0/0