考虑部分数据模糊和缺失的应急物资需求预测的方法
摘要:
本发明公开一种考虑部分数据模糊和缺失的应急物资需求预测模型构建方法及基于该模型对应急物资需求进行预测,针对白化权函数转折点难以确定模糊数据的问题,提出两种求模糊区间灰数的“核”的计算公式,所得的“核”代替原有模糊信息,达到不确定信息转变为确定信息的目的,针对部分数据缺失,在结合灰色关联度和K近邻填补算法的基础上,提出改进的GKNN算法,在填补环节引入权重,并在填补后加入逻辑检验条件;然后将预处理后的数据输入经过改进的遗传算法优化后的神经网络模型,得到训练好的应急物资需求预测模型,并对预测模型进行测试,调整模型参数使得模型最优,预测精度也更高。
0/0