基于情景信号类前额叶网络的信息处理方法、系统、装置
摘要:
本发明属于模式识别及类脑机器学习领域,具体涉及了一种基于情景信号类前额叶网络的信息处理方法、系统、装置,旨在解决复杂情况下即复杂多任务情况下系统结构复杂、灵活性差、训练样本需求量大的问题。本发明方法包括:选择对应特征向量提取器进行特征提取;将信息特征向量与情景信号集中每一个情景信号进行维度匹配;维度匹配后的情景特征向量输入特征向量分类器,获得分类信息。本发明方法利用类似于前额叶的模块,实现面向情境信息的多任务学习,在上下文情景信息不能事先确定的情况下,可以逐步学习依赖于上下文情境信息的映射,处理后的数据可应用于多任务学习或更高要求的连续多任务学习。
0/0