基于神经网络的3D打印误差补偿方法、系统、装置
摘要:
本发明属于3D打印领域,具体涉及一种基于神经网络的3D打印误差补偿方法、系统、装置,旨在解决3D打印过程中对模型误差补偿困难的问题。本发明结合人工智能领域的神经网络来预测和补偿加式制造所产生的误差,通过三维扫描等技术获得数据,然后利用神经网络学习3D打印中的形变函数并完成预测,或学习逆向的形变函数并直接补偿。通过本发明对新模型误差补偿更容易,同样硬件基础上模型打印的精准度得到提高,或为达到同样的精度可以降低对硬件的要求。
0/0