一种基于GRU神经网络的公交到站时间预测方法
摘要:
本发明公开了一种基于GRU神经网络的公交到站时间预测方法,所述方法包括:由数据库导出历史数据至CSV格式文件,获取原始数据,利用HBase分布式数据库和Spark内存处理技术对所述原始数据进行分析处理去除原始数据的混杂性、复杂性和系数性;基于单一属性和多因子角度采用特征相关性研究法处理分析处理后的所述原始数据,得到标准时间序列类型数据;利用Lasso方法对标准时间序列类型数据进行变量选择,剔除标准时间序列类型数据中关联性弱的特征向量;基于GRU神经网络构建公交的到站预测模型,输入已剔除关联性弱特征向量的标准时间序列类型数据至到站预测模型,实现对公交到站的时间预测操作;本发明可有效提升对公交到站时间预测的准确性。
公开/授权文献
0/0