一种基于半监督学习框架的T细胞受体序列分类方法
摘要:
本发明公开了一种基于半监督学习框架的T细胞受体序列分类方法,选取CDR3β区域作为输入数据,对T细胞受体数据进行特征编码;根据得到的数据,选择支持向量机、随机森林和决策树的监督学习算法分别构造初始分类器C1、C2、C3;对初始分类器C1、C2、C3进行训练得到扩充的新训练集,产生的训练集进行可重复取样获得三个有标记训练集,然后从每个新训练集产生一个分类器,对分类器进行迭代更新;训练完成后,将三个分类器C1、C2、C3通过投票机制作为一个分类器集成进行使用。本发明适用于T细胞受体序列数据难以获得的情况,性能显著优于现有方法。
0/0