基于分箱置信度筛选深度森林的机器学习分类方法
摘要:
本发明涉及基于分箱置信度筛选深度森林的机器学习分类方法,针对于现有技术中基于深度置信森林对数据分类效果不佳,精确度不高而提出。这是首次将分箱法应用到深度置信筛选森林的门阈值确定之中。首先确定级联森林的一层,之后依靠实例在这一层的预测类别向量计算置信度,然后按照置信度进行排序并将排好序的实例按照顺序放入箱中,最后根据需求的准确率确定需求的箱子,并且输出箱子中最后一个实例的置信度为此层置信度筛选的门阈值,提高了深度置信筛选森林对于实例分类的预测精度。
0/0