基于深度学习的PCB缺陷自动检测方法
摘要:
本发明公开了一种基于深度学习的PCB缺陷自动检测方法,步骤如下:(1)对原始数据进行预处理,作数据格式和尺寸转换,完成数据集划分;(2)对预处理后的图像进行数据增强处理;(3)将增强后的数据输入到一种新的微小缺陷检测网络,训练出缺陷检测模型;(4)将训练后得到的模型进行性能评估;(5)参照步骤(4)评估的结果,对模型开展进一步的优化。本发明实现了PCB板缺陷的自动检测与目标识别,解决了PCB缺陷检测时效率低和精度低的问题,在节约人工成本的同时,大幅度提高缺陷检测的效率和可靠性;本发明提出的缺陷自动检测方法易于扩展到其它领域的微小缺陷检测,如织物缺陷检测和金属表面缺陷检测。
公开/授权文献
0/0