一种基于分阶段特征提取的冻结步态检测系统
摘要:
本发明公开了一种基于分阶段特征提取的冻结步态检测系统,属于机器学习领域。包括:基于用户行走过程中采集到的原始加速度数据,构建有标签的样本集,样本为加窗处理后的加速度数据序列,标签表示样本属于正常步态还是冻结步态;对每个样本进行分阶段特征提取;使用PCA对步态特征集进行特征变换,得到低维新步态特征集,对低维新步态特征集进行特征选择,得到最优步态特征子集;使用最优步态特征子集训练基于机器学习的冻结步态检测模型;提取待测样本的分阶段特征,输入至训练好的冻结步态检测模型,得到冻结步态检测结果。本发明提取加速度信号中运动分量及冻结带,并对运动信号进行合成与分解,以充分发挥原始数据的潜在特征。
0/0