摘要:
本发明属于机器学习领域,公开了一种机器学习框架漏洞API参数定位方法、系统、设备及介质,包括:获取一能够触发机器学习框架漏洞的API单层模型,并获取该API单层模型的参数组合及模型输入;变异参数组合中的单个参数,得到变异API单层模型;采用模型输入及变异API单层模型测试机器学习框架,得到机器学习框架漏洞的触发结果;对参数组合中的每个参数,均重复进行若干次变异;整合所有参数组合与对应机器学习框架漏洞的触发结果,进而分析得到机器学习框架漏洞触发的API参数。无须过多先验知识,复杂度低,对于机器学习框架与API类型、漏洞问题的种类与测试方法均无特定的限制,可以应用在多种机器学习框架下的不同API的各种漏洞问题测试中,普适性强。
公开/授权文献
- CN112069508A 机器学习框架漏洞API参数定位方法、系统、设备及介质 公开/授权日:2020-12-11