一种基于多特征融合共同向量的变压器故障诊断方法
摘要:
本发明公开一种基于多特征融合共同向量的变压器故障诊断方法,利用变压器油中的溶解气体浓度数据,设计出一种可靠且准确性高的、容易实施的、不受模型参数影响的变压器故障诊断方法。具体来讲,本发明方法首先对溶解气体浓度数据进行统计特征和比值特征的双重构造。其次,本发明方法针对原溶解气体浓度数据、统计特征数据、和比值特征数据的多特征融合数据建立基于共同特征向量的分类模型。最后,针对变压器故障状态下的溶解气体分析数据识别变压器的故障类型。本发明方法基本上不涉及复杂的变换或数学计算,且操作简单,非常易于实施。此外,本发明方法在实施过程中不需要人为主观的确定某些模型参数,这极大了避免了参数选择的难题。
0/0