一种基于机器学习模型的MCS合成装置反应温度预测方法
摘要:
本发明涉及工业装置数据挖掘领域,尤其涉及一种基于机器学习模型的MCS合成装置反应温度预测方法,包括从MCS合成装置运行相关变量中筛选出与反应温度有关的变量因素;获取与反应温度有关的变量因素所对应的历史数据并进行预处理;采用ε‑SVR机器学习算法建立SVR反应温度变化率预测模型;获取与反应温度有关的变量因素所对应的当前数据并输入训练好的SVR反应温度变化率预测模型,计算获得未来一段时间的反应温度变化率预测值,通过对当前反应温度值与反应温度变化率预测值进行累加,获得未来一段时间MCS合成装置的反应温度预测值。通过对甲基氯硅烷(MCS)合成装置运行反应温度进行预测,能够分析当前该甲基氯硅烷(MCS)合成装置的反应温度的稳定性及变化趋势。
0/0