一种边缘数据增强模型、以及基于所述模型的高效边缘数据增强方法及系统
摘要:
本发明提出了一种边缘数据增强模型、以及基于所述模型的高效边缘数据增强方法及系统,该方法通过对网络模型中卷积网络感受野的减少、图像处理中的重叠切分以及硬件方面对内存扩展三者之间的协同优化,实现了对图像边缘数据的有效增强,在图像超分辨重建、去模糊、去雾化等低等级视觉任务的深度学习算法领域达到在适用于边缘端部署应用的目的。本发明同时也解决了在计算能力弱、内存空间小的边缘端部署深度神经网络的问题,以及发明中涉及的边缘端实时处理图像信号的任务,可以代替一些监控场景中传统的实时处理图像信号的模块,进而实现更加丰富的功能,和更加优秀的成像效果。
0/0