一种基于深度卷积神经网络模型-重生网络的视觉识别方法
摘要:
基于深度卷积神经网络模型‑重生网络的视觉识别方法,采用“重生机制”的“重生模块”搭建一种新型深度卷积神经网络模型,引入的重生机制对被ReLU函数截断死亡的神经元进行重生再造,“重生机制”的实现流程:在重生网络中,引入并实现重生机制的模块称为重生模块;首先,重生模块的输入x为上层卷积层得到的特征映射,先将x输入传统的ReLU函数,得到激活后的特征映射x1,这样就筛选出取值为正的神经元,并截断负值的神经元;同时,将输入x取反,并行地将‑x输入ReLU函数,得到激活后的特征映射x2*,这样就筛选出取值为负的神经元,并截断正值的神经元;对取值为负的神经元进行筛选后,对它们进行逆卷积操作,然后与正值进行通道级联,就是负神经元的重生过程。
0/0