一种基于Elman神经网络优化空气质量数值的算法
摘要:
本发明涉及一种基于Elman神经网络优化空气质量数值的算法。该方法首先在气象数据,地理数据,污染源清单数据的驱动下运行空气质量数值模式CMAQ和CAMx。将运行结果进行预处理,去除缺测值,然后对实测数据和空气质量数值模式输出数据进行归一化处理。将处理后的数据输入到Elman神经网络模型进行训练,得到训练模型。将需要优化的CMAQ和CAMx数据输入到模型,得到优化后的结果,并将预测结果返回给用户。本发明方法通过相关实验验证了方法的准确性。
0/0