基于深度学习的遥感影像玉米秸秆覆盖识别方法及装置
摘要:
本发明提供一种基于深度学习的遥感影像玉米秸秆覆盖识别方法及装置,该方法包括:对被测遥感影像以预设重叠度进行裁剪;将每一裁剪后图像,分别输入预训练的AP‑UNET网络模型,输出玉米秸秆覆盖概率图;根据所述玉米秸秆覆盖概率图,基于全连接CRF方法,获得玉米秸秆分布图;其中,所述AP‑UNET网络模型,是基于UNET网络,在双层卷积层前加入Dropout层,双层卷积层后加入Batch Normalization、注意力机制CBAM模块和PSPP模块得到。该方法自动化程度和提取效率高,可扩展性好,且提取精度高,可调整参数应用于不同传感器的遥感卫星影像。利用该AP‑UNET网络模型可有效解决在高分辨率影像中提取秸秆覆盖特征问题。
0/0