无人平台烟尘雾感知方法、系统、计算机设备及存储介质
摘要:
本申请涉及一种无人平台烟尘雾感知方法、系统、计算机设备及存储介质。所述方法包括:对烟尘雾图像进行稀疏标注构建训练数据集,训练烟尘雾识别网络,根据识别结果生成特征激活图像,计算神经元对于烟尘雾和背景特征的激活分布,根据激活分布对训练数据集进行补充标注。定义包括烟尘雾分类损失项和特征激活损失项的损失函数,迭代更新训练数据集对神经网络进行,由无人平台基于训练好的烟尘雾感知模型进行烟尘雾感知。本申请基于分类网络架构,根据神经网络和烟尘雾图像中的背景或烟尘雾特征的响应关系来对样本进行像素标注,对神经网络训练过程进行监督,降低了模型复杂度和标注成本,增强了模型的快速部署的能力。
0/0