一种基于多层堆叠式神经网络的台区相序识别方法及装置
摘要:
本发明涉及一种基于多层堆叠式神经网络的台区相序识别方法及装置,通过获取目标台区在某时间段内的配电变压器各相低压出线与各用户电表之间的时序电压样本数据,并对时序电压样本数据进行预处理;对处理后得到的样本集生成训练集和测试集,采用CNN网络对训练集训练得到时间序列特征,采用LSTM网路对时间序列特征和训练集进行训练建立相序预测模型;采用相序预测模型预测测试集中用户电表与配电变压器各相的相序。该台区相序识别方法不需要目标台区外挂其他终端设备的前提下,即可准确梳理用户电表的相序归属关系,成本低且工程应用价值高,解决现有对台区“变‑线‑相‑户”物理拓扑的识别,存在额外增加终端设备的问题。
0/0