一种基于关联参数挖掘的工业过程故障融合预测方法
摘要:
本发明涉及一种基于关联参数挖掘的工业过程故障融合预测方法,包括步骤:基于关联规则挖掘算法对工业过程运行参数进行关联性挖掘;利用训练样本提取关联参数的参数特征,基于参数特征和故障时间构造训练集;利用训练集构造BP神经网络模型,作为基于关联参数的故障时间预测模型。本发明的有益效果是:构建了多参数多模型融合预测模型,将关联规则引入参数选取中,挖掘参数关联性进而筛选出用以建模的运行参数;进一步针对不同参数构建了不同预测模型,进一步将关联规则挖掘结果引入模型融合中实现预测模型的融合,从而获得了覆盖状态信息全面且具有强鲁棒性的故障时间预测模型。对于工程上的故障预测和健康管理有重大应用价值。
0/0