一种基于不完全信息博弈的智能车换道决策方法
摘要:
本发明公开了一种基于不完全信息博弈的智能车换道决策方法,首先在时间和空间上,对智能车换道意图和换道可行性进行建模;然后根据换道车辆及其周车的状态信息来建立收益矩阵;收益矩阵的求解采用博弈论中的帕累托最优和纳什均衡进行求解;为了解决不完全信息非合作动态博弈的行为信息未知问题,换道车辆对具有博弈冲突的车辆进行速度及加速度的纵向行为预测,所采用的方法是NARX神经网络模型;换道车辆的周车通过连续隐马尔科夫模型预测换道车辆的横向运动。博弈参与者通过预测他车未来的行为趋势来对收益矩阵的决策进行修正,在决策达到执行的阈值时执行。
0/0