一种基于改进DeepLabv3+网络模型的铸件表面缺陷识别方法
Abstract:
本发明提供了一种基于改进DeepLabv3+网络模型的铸件表面缺陷识别方法包括如下步骤:步骤S1、采集铸件图像数据集,获得训练集和测试集;步骤S2、构建网络模型,并通过训练集和测试集对网络模型进行数据训练和修正,生成缺陷检测网络;步骤S3、设计缺陷检测网络的损失函数;步骤S4、所述缺陷检测网络识别并输出铸件缺陷检测结果,并显示检测时长。本发明采用深度学习的方法对铸件表面缺陷进行识别,提升了缺陷识别的精度和速度,为工业铸件质量检测提供新思路。
Patent Agency Ranking
0/0