一种基于深度学习的地面无人平台人员跟踪方法
摘要:
本发明提出一种基于深度学习的地面无人平台人员跟踪方法,包括行人目标检测、人员识别以及图像与激光雷达的匹配方法。其中,行人目标检测提取出图像中包含人员的包围框,人员识别则是从提取的包围框中识别出特定的引导人员,图像与激光雷达的匹配方法则是计算出特定引导人员与地面无人平台的相对距离,为之后的底盘跟踪速度生成提供数据。本发明能够实现无人平台对人员的跟踪,不需要人员穿戴特殊制品的前提下,解决了传统视觉目标跟踪易导致的目标漂移问题,提高了算法的鲁棒性,同时不损失算法使用的灵活性。
0/0