一种数据增广的深度半监督超限学习图像分类方法及系统
摘要:
本发明公开了一种数据增广的深度半监督超限学习图像分类方法及系统,本发明方法包括针对训练图像采用深度卷积网络模型进行特征提取;基于部分人工标签数据微调优化深度卷积网络模型并为无标签的训练图像生成伪标签;将从训练图像提取得到的高层语义特征与低层浅层结构特征融合得到融合图像特征;采用随机线性插值技术对训练图像的融合图像特征与标签进行增广;针对增广后的融合图像特征与标签训练单隐层前馈神经网络并替代深度卷积网络模型中的全连接层得到最终的图像分类识别网络模型。本发明具有人工标记需求小、具有鲁棒的抗噪声干扰能力、分类识别性能良好、任务扩展性强的数据增广的优点。
0/0