一种基于Bagging和长短期记忆网络的信道盲均衡方法及系统
Abstract:
本发明公开了一种基于Bagging和长短期记忆网络的信道盲均衡方法及系统,该方法包括如下步骤,建立基于长短期记忆网络的信道盲均衡模型;采用Bagging算法对长短期记忆网络盲均衡模型进行优化;对得到的模型进行训练,得到最佳的参数设置;利用训练好的盲均衡模型对新数据进行均衡。在保证神经网络对非线性良好的拟合前提下,通过引入长短期记忆网络解决了神经网络盲均衡过程中参数寻优困难和易于陷入局部最优解的问题。此外,基于改进常模算法MCMA消除了信道对于传输信号在幅值和相位两个方面的影响,使得本发明技术方案更具适应性,适用的信道环境更广,能够提升神经网络类均衡器在时变信道的均衡性能。
Patent Agency Ranking
0/0