摘要:
本发明涉及一种联邦学习中基于局部模型梯度的用户筛选方法、系统、设备及存储介质,当服务器接收到各个用户传输过来的局部模型梯度矩阵后,首先将各个用户的局部模型梯度矩阵按行或按列展开成一个向量,然后利用PCA对向量进行降维,再利用DBSCAN聚类方法进行聚类,得到聚类结果中数量最多的一类,再求得此类中所有降维局部模型梯度的几何中心点,最后根据每个用户的降维局部模型梯度与上述几何中心点的距离选择用户,选择离中心点最近的部分用户的梯度用来更新全局模型。该筛选方法能够有效筛选基于高质量数据计算的局部模型梯度,提高联邦学习系统的鲁棒性。
公开/授权文献
- CN113344220A 一种联邦学习中基于局部模型梯度的用户筛选方法、系统、设备及存储介质 公开/授权日:2021-09-03