基于门控自适应分层注意力单元网络的电机寿命预测方法
摘要:
本申请提供一种基于门控自适应分层注意力单元网络的电机寿命预测方法,具体方法为:采集伺服电机的振动信号,通过对振动信号进行预处理并利用傅里叶变换得到FFT数据,将该数据输入QFDCAE网络中构建伺服电机的健康特征指标,将该健康特征指标输入到基于门控自适应分层注意力单元网络GAHAU的电机寿命预测模型中进行电机剩余使用寿命预测;本申请采用基于门控自适应分层注意力单元网络GAHAU模型对电机剩余寿命进行预测,比现有神经网络的预测精度更高。
0/0