一种基于联邦学习的可再生能源日前场景生成方法
摘要:
本发明公开了一种基于联邦学习的可再生能源日前场景生成方法,包括以下步骤:定义并设置训练参数;进行梯度下降策略进行本地模型训练;数据所有者产生符合高斯分布的noise,扰动本地模型;获取各数据所有者上传的生成器、判别器权重参数,计算本轮生成器和判别器更新的权重;将新的模型参数广播给各数据所有者;利用新的梯度在本地执行CWGAN训练任务,得到结果上传至中心服务器;重复至训练结束。本发明优点是:1、较好地构建可再生能源日前场景生成的模型,CWGAN有效学习到出力特征和日前出力不确定性。2、利用黑盒模型具有广泛适用性。3、保护各数据所有者数据隐私安全。4、当某客户端数据出现严重缺失情况时,可以对该可再生能源端进行有效建模。
0/0