一种多特征融合计算识别胶质瘤复发与坏死的方法
摘要:
本发明公开了一种多特征融合计算识别胶质瘤复发与坏死的方法,包括以下步骤,步骤一:数据预处理;步骤二:对胶质瘤病灶进行分割;步骤三:对胶质瘤病灶影像组学特征进行获取;步骤四:对多特征融合分类;本发明所述的一种多特征融合计算识别胶质瘤复发与坏死的方法,本方法神经网络的卷积层特征与影像组学特征进行融合,使模型通过两种特征维度空间,能够从常规MRI结构像学习到区分复发与坏死的病灶特征信息,以此缓解国内专业医疗人员的分布不均匀、高质量影像设备有限等问题,从而能够辅助医生对术后的GBM患者有更好的预判结果。
0/0