基于Faster R-CNN的铁路入侵行为检测方法
摘要:
本发明提出了一种基于Faster R‑CNN的铁路异常入侵行为检测方法,用于解决现有技术中存在的检测准确率较低的技术问题,实现步骤为:构建DAS数据处理系统;获取训练样本集和测试样本集;构建铁路入侵行为检测网络模型Faster R‑CNN;对铁路入侵行为检测网络模型Faster R‑CNN进行迭代训练;获取铁路异常入侵行为检测结果。本发明所构建的网络模型Faster R‑CNN使用归一化时空信号图像作为训练样本集,充分结合信号的时空特征,区分背景噪声信号的干扰,减少误报,同时候选区域生成网络精确预测特征图的区域候选框位置,一定程度上提高了检测准确率,可用于保护铁路列车的安全运行。
公开/授权文献
0/0