一种基于高效多源胶囊网络的跨被试EEG认知状态检测方法
摘要:
本发明提出一种基于高效多源胶囊网络的跨被试EEG认知状态检测方法。本发明通过将目标域和多源域的特征分布对齐,以实现域间特征的有效迁移。将EEG数据构建成多通道一维结构,提高了训练效率,同时提高模型性能。其次,引入自表达模块来捕捉样本之间的潜在联系,能够很好地适应不同任务下具有显著个体差异的跨被试EEG数据分析。最后提出了基于动态子胶囊的空间注意力算法来进一步学习EEG数据空间层次上的细粒度特征信息,有效刻画了EEG数据的部分间空间关系和部分‑整体层次关系。本发明有效避免了脑认知计算领域脑电信号的个体差异性问题,可适用于任何任务下基于EEG的认知状态识别,具有较强的泛化能力,能够很好的适用于临床诊断和实际应用。
0/0