密集行人检测方法
摘要:
一种密集行人检测方法。在网络训练阶段,搭建卷积神经网络,训练编码器解码器及检测头部预测正确的行人包围框;并根据预测结果,为每个行人分配一个最佳的预测候选框;固定密度估计头部外的其他网络参数,使用每个行人唯一的预测候选框生成密度目标,训练密度估计头部;最后放开网络所有参数,联合训练整个网络。在测试应用阶段,在进行后处理时,每选定一个确定保留的行人框,则在这张预测密度图上减去对应位置的高斯激活图,对于那些与该被保留行人重叠率大于阈值的行人框,利用更新后的密度图对这些行人框进行二次判断。本发明在密集场景下,解决了通用的非极大值抑制方法会误删的正确预测的包围框的问题,同时也不影响非密集场景的表现。
0/0