基于ONT-GCN时空模型的热误差预测模型及建模方法和霾-边-雾-云误差补偿系统
摘要:
本发明公开了一种基于ONT‑GCN时空模型的热误差预测模型及其建模方法和霾‑边‑雾‑云误差补偿系统。本发明基于ONT‑GCN时空模型的热误差预测模型,利用LSTMN神经网络捕捉传感器收集的数据的时间依赖性,利用GCN神经网络捕捉拓扑结构的空间特征,可以将捕获的空间特征和时序特征保留在ONT‑GCN单元中;ONT‑GCN单元的独特排序特性允许保留重要的热误差信息,因此,ONT‑GCN单元可以有序地传递热误差的时间和空间特征,从而提高热误差的预测精度。本发明的霾‑边‑雾‑云误差补偿系统,云计算具有强大的计算能力,用于解决耗时问题;通过设置雾计算层和边缘层等分布式计算层,可缓解工业互联网的带宽压力;通过霾计算层以加快信息获取过程,从而以保证系统执行效率和机床的加工精度。
0/0