一种基于深度强化学习的无蜂窝大规模MIMO功率分配方法
摘要:
本发明公开了一种基于深度强化学习的无蜂窝大规模MIMO功率分配方法,包括:构建无蜂窝大规模MIMO系统,以AP与UE之间的功率控制系数为优化参数,提出下行链路功率分配的优化问题;将优化问题建模为一个马尔可夫决策过程,并构建可以与强化学习模型交互的无蜂窝大规模MIMO环境;建立DDQN网络拟合用于评价功率控制系数的Q函数,与无蜂窝大规模MIMO环境交互,训练Dueling DDQN网络,使得MDP问题的累积收益最大,最终得到各个AP与UE之间的功率控制系数。与传统的基于优化的算法相比,本方法通过建立环境,让强化学习模型与之交互的方式获得优解,而无需针对问题建立精确的模型。
0/0