一种基于K-means聚类算法的神经网络预报轧制力的预报方法
摘要:
本发明公开了一种基于K‑means聚类算法的神经网络预报轧制力的预报方法。属于计算机技术领域,具体步骤:确定RBF神经网络的输入及输出层;估算非线性多层前向RBF神经网络输入、输出层和隐节点的节点个数;构成隐含层空间;确定合适的数据中心,并根据各中心之间的距离确定隐节点的扩展常数;训练人工神经网络,学习修正误差,完成人工神经网络构建;并采用此人工神经网络进行轧制力预设定以供生产使用。本发明相较于传统非线性多层前向神经网络运行速度快,模型易于维护,同时避免了依据设计者因个人经验而设定了不合适的神经网网络的隐含层数和隐含层结点数、定位不到准确的各基函数的数据中心等弊端,精度较高。
0/0