基于GASF和CNN的三电平T型逆变器故障诊断方法
摘要:
本发明提出一种基于GASF和CNN的三电平T型逆变器故障诊断方法,先通过格拉姆求和角场算法,将逆变器输出端的时序电流信号进行极坐标编码,然后利用生成角度进行格拉姆矩阵变换转换为格拉姆矩阵图,再将格拉姆矩阵图作为卷积神经网络的输入,自适应的进行特征提取,避免人工提取特征的不确定性和复杂性,最后利用Adam优化的softmax分类器对CNN提取的故障特征进行分类,从而实现逆变器的故障诊断。
公开/授权文献
0/0