一种基于深度学习的胎儿MRI脑组织分割方法及装置
摘要:
本发明涉及医学MRI成像领域,具体涉及一种基于深度学习的胎儿MRI脑组织分割方法及装置。该方法及装置首先对胎儿大脑MRI进行数据增强操作,再构建基于Contextual Transformer block的特征金字塔模型:特征金字塔模型在编码器和解码器部分引入注意力结构CoT‑Block,注意力结构CoT‑Block利用key上下文信息,指导动态注意力矩阵的学习,增强提取数据增强后的胎儿大脑MRI图像中的特征;特征金字塔模型在解码器部分引入混合膨胀卷积模块,混合膨胀卷积模块扩大感受野并且保留详细的空间信息,并有效提取医学图像中的全局上下文信息,从而有效地提高分割的精度,最大程度地帮助医生进行临床诊断。
0/0