一种基于概率图模型的网络攻击路径预测方法及系统
Abstract:
本发明涉及一种基于概率图模型的网络攻击路径预测方法及系统,其方法包括:S1:获取已有的网络安全知识图谱,利用表示学习将网络实体节点转换为向量,计算向量在欧式空间中的相似度作为网络实体节点状态转移概率;其中网络实体节点包括:APT组织、威胁指标、安全漏洞和网络资产;S2:利用贝叶斯网络,基于网络实体节点状态转移概率,计算网络实体节点的联合概率分布,选择联合概率最大的攻击链路作为最可信的网络攻击路径。本发明提供的方法,构建网络安全实体之间的关系图谱,解决了因多源异构网络安全实体难以建模的难题,极大地提高了预测APT潜在攻击路径的能力。
Public/Granted literature
Patent Agency Ranking
0/0