一种基于DQN的分布式计算网络协同流量调度系统与方法
摘要:
本发明公开了一种基于DQN的分布式计算网络协同流量调度系统与方法。所述方法包括:基于分布式计算任务信息和数据面可编程转发平台中端口队列的拥塞情况构建环境特征数据,基于DQN中的动作价值网络和目标网络构建并训练深度强化学习智能体,深度强化学习智能体输出抽象动作;通过策略映射器接收抽象动作,并将其映射成可执行协同流量调度策略;数据面可编程转发平台执行策略映射器生成的可执行协同流量调度策略,并更新端口队列的拥塞情况;通过策略增益器记录分布式计算任务完成时间作为深度强化学习智能体的实时奖励,根据前后两次分布式计算任务遵循可执行协同流量调度策略产生的耗时之差,对深度强化学习智能体进行迭代优化。
0/0