一种卷积神经网络训练用学习率自调节方法及其在PRPD图谱识别的应用
摘要:
一种卷积神经网络训练用学习率自调节方法及其在PRPD图谱识别的应用,属于GIS电气绝缘故障检测领域,通过现场检测以及积累,构建绝缘故障局放信号数据样本集,常见的信号类型主要包括尖端放电、沿面放电、悬浮放电、自由金属颗粒放电以及无故障的噪声信号;然后搭建卷积神经网络模型,通过网络训练获取模型,识别局放信号类别,实现绝缘故障类型的诊断。本发明采用自适应学习率CNN模型,对学习率进行了自动优化处理,具体是在每次迭代时求得学习率的最优值,并应用于下一次迭代的网络参数优化过程当中,实现学习率的自动调节,提升识别准确率,更加精准、快速的识别局部放电信号类型,提高绝缘故障检测的效率。
0/0