异质图神经网络属性补全方法
Abstract:
本发明公开了一种异质图神经网络属性补全方法,包括使用异质信息网络的嵌入方法对异质图网络进行节点嵌入,以形成拓扑网络结构;以拓扑结构为指导,通过残差注意力机制来聚合目标节点的邻居属性,对缺失属性的目标节点进行属性补全操作;将该方法与其他的异质网络模型相结合,计算模型的损失函数,并进行优化,达到一个端到端的效果。本发明可以与不同的异质图神经网络模型结合,并在真实的数据集上进行实验,针对属性缺失和训练过拟合问题,得到了更好的解决效果,明显的提高了预测的性能。
Patent Agency Ranking
0/0